# High-Resolution Hologram Calculation Method Based on Light Field Image Rendering

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## Featured Application

**The proposed method is applicable for static 3D advertising and holographic packaging.**

## Abstract

## 1. Introduction

## 2. Methods

## 3. Experiment and Results

## 4. Discussion

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Yaras, F.; Kang, H.; Onural, L. State of the art in holographic display: A survey. J. Disp. Technol.
**2010**, 6, 443–454. [Google Scholar] [CrossRef] - Matsushima, K.; Arima, Y.; Nakahara, S. Digitized holography: Modern holography for 3D imaging of virtual and real objects. Appl. Opt.
**2011**, 50, H278–H284. [Google Scholar] [CrossRef] [PubMed] - Yang, X.; Zhang, H.; Wang, Q.H. A fast-computer-generated holographic method for VR and AR near-eye 3D display. Appl. Sci.
**2019**, 9, 4164. [Google Scholar] [CrossRef] [Green Version] - Lin, S.; Wang, D.; Wang, Q.; Kim, E. Full-color holographic 3D display system using off-axis color-multiplexed-hologram on single SLM. Opt. Laser Eng.
**2020**, 126, 105895. [Google Scholar] [CrossRef] - Maimone, A.; Georgiou, A.; Kollin, J. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph.
**2017**, 36, 8501–8516. [Google Scholar] [CrossRef] - Li, X.; Liu, J.; Zhao, T.; Wang, Y. Color dynamic holographic display with wide viewing angle by improved complex amplitude modulation. Opt. Express
**2018**, 26, 2349–2358. [Google Scholar] [CrossRef] - Gao, H.; Xu, F.; Liu, J.; Dai, Z.; Zhou, W.; Li, S.; Yu, Y.; Zheng, H. Holographic three-dimensional virtual reality and augmented reality display based on 4K-spatial light modulators. Appl. Sci.
**2019**, 9, 1128. [Google Scholar] [CrossRef] [Green Version] - Lin, S.; Cao, H.; Kim, E. Single SLM full-color holographic three-dimensional video display based on image and frequency-shift multiplexing. Opt. Express
**2019**, 27, 15926–15942. [Google Scholar] [CrossRef] - Shi, Y.; Wang, H.; Li, Y.; Jin, H.; Ma, L. Practical method for color computer generated rainbow holograms of real-existing objects. Appl. Opt.
**2009**, 48, 4219–4226. [Google Scholar] [CrossRef] - Yang, X.; Wang, H.; Li, Y.; Xu, F.; Zhang, H.; Zhang, J. Large scale and high resolution computer-generated synthetic color rainbow hologram. J. Opt.
**2019**, 21, 025601. [Google Scholar] [CrossRef] - Yang, X.; Wang, H.; Li, Y.; Xu, F.; Zhang, H.; Zhang, J.; Yan, Q. Computer generated full-parallax synthetic hologram based on frequency mosaic. Opt. Commun.
**2019**, 430, 24–30. [Google Scholar] [CrossRef] - Yamaguichi, T.; Yoshikawa, H. High resolution computer generated rainbow hologram. Appl. Sci.
**2018**, 8, 1955. [Google Scholar] [CrossRef] [Green Version] - Kunieda, O.; Matsushima, K. High-quality full-parallax full-color three-dimensional image reconstructed by stacking large-scale computer-generated volume holograms. Appl. Opt.
**2019**, 58, G104–G111. [Google Scholar] [CrossRef] [PubMed] - Yamamoto, Y.; Nakayama, H.; Takada, N.; Nishitsuji, T.; Sugie, T.; Kakue, T.; Shimobaba, T.; Ito, T. Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points. Opt. Express
**2018**, 26, 34259–34265. [Google Scholar] [CrossRef] - Su, P.; Cao, W.; Ma, J.; Cheng, B.; Liang, X.; Cao, L.; Jin, G. Fast computer-generated hologram generation method for three-dimensional point cloud model. J. Disp. Technol.
**2016**, 12, 1688–1694. [Google Scholar] [CrossRef] - Arai, D.; Shimobaba, T.; Murano, K.; Endo, Y.; Hirayama, R.; Hiyama, D.; Kakue, T.; Ito, T. Acceleration of computer-generated holograms using tilted wavefront recording plane method. Opt. Express
**2015**, 23, 1740–1747. [Google Scholar] [CrossRef] - Liu, J.; Liao, H. Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method. Appl. Opt.
**2018**, 57, A215–A221. [Google Scholar] [CrossRef] - Abookasis, D.; Rosen, J. Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene. Appl. Opt.
**2006**, 45, 6533–6538. [Google Scholar] [CrossRef] [Green Version] - Zhang, H.; Zhao, Y.; Cao, L.; Jin, G. Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues. Opt. Express
**2015**, 23, 3901–3913. [Google Scholar] [CrossRef] - Blinder, D.; Shimobaba, T. Efficient algorithms for the accurate propagation of extreme-resolution holograms. Opt. Express
**2019**, 27, 29905–29915. [Google Scholar] [CrossRef] - Zhang, H.; Deng, H.; Li, J.; He, M.; Li, D.; Wang, Q.H. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt. Lett.
**2019**, 44, 387–390. [Google Scholar] [CrossRef] - Zhang, Y.; Fu, Y.; Wang, H.; Li, H.; Pan, S.; Du, Y. High resolution integral imaging display by using a microstructure array. J. Opt. Technol.
**2019**, 86, 100–104. [Google Scholar] [CrossRef] - Ai, L.; Cao, H.; Sun, H.; Shi, X. Performance enhancement of integral imaging based Fresnel hologram capturing by the intermediate view reconstruction. Opt. Express
**2019**, 27, 31942–31955. [Google Scholar] [CrossRef] [PubMed] - Zhang, X.; Lv, G.; Wang, Z.; Hu, Z.; Ding, S.; Feng, Q. Resolution-enhanced holographic stereogram based on integral imaging using an intermediate-view synthesis technique. Opt. Commun.
**2020**, 457, 124656. [Google Scholar] [CrossRef]

**Figure 1.**The rendering of elemental light field images (EIs) with a pinhole array for hologram calculation.

**Figure 2.**The geometric relationship for hologram calculation: (

**a**) the side view of the holographic plane H and 3D model; (

**b**) the front view of the 3D model. The first layer Chinese characters are the abbreviation of “Beihang” University and the second layer Chinese characters mean “Holography”.

**Figure 6.**(

**a**) The diagram of optical setup for reconstruction; (

**b**–

**d**) different views of the reconstructed 3D image. Video S1 shows the reconstruction from different viewpoints.

**Figure 8.**(

**a**–

**c**) Three reconstructed images from different viewpoints. Video S2 shows the reconstruction from different viewpoints.

Parameters | Values |
---|---|

Number of points in the 3D model | 984K |

Size of hologram | 63.6 × 63.6 mm |

Resolution of hologram | 200K × 200K |

Pixel pitch of hologram | 0.318 μm |

Resolution of hogel | 2800 × 1108 pixels |

Wavelength | 632 nm |

Size of EI | 0.89 × 0.35 mm |

Pixel pitch of EI | 4 μm |

Resolution of EI | 222 × 88 pixels |

Number of EIs | 71 × 181 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yang, X.; Xu, F.; Zhang, H.; Zhang, H.; Huang, K.; Li, Y.; Wang, Q.
High-Resolution Hologram Calculation Method Based on Light Field Image Rendering. *Appl. Sci.* **2020**, *10*, 819.
https://doi.org/10.3390/app10030819

**AMA Style**

Yang X, Xu F, Zhang H, Zhang H, Huang K, Li Y, Wang Q.
High-Resolution Hologram Calculation Method Based on Light Field Image Rendering. *Applied Sciences*. 2020; 10(3):819.
https://doi.org/10.3390/app10030819

**Chicago/Turabian Style**

Yang, Xin, FuYang Xu, HanLe Zhang, HongBo Zhang, Kai Huang, Yong Li, and QiongHua Wang.
2020. "High-Resolution Hologram Calculation Method Based on Light Field Image Rendering" *Applied Sciences* 10, no. 3: 819.
https://doi.org/10.3390/app10030819