Preparation of Polyvinyl Alcohol/Bacterial-Cellulose-Coated Biochar–Nanosilver Antibacterial Composite Membranes
Abstract
Featured Application
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Composite Membranes
2.2.1. Preparation of Bacterial Cellulose (BC) and BC Emulsion
2.2.2. Preparation of the C-Ag Composites
2.2.3. Preparation of PVA/BC/C-Ag Composite Membranes
2.3. Characterization of PVA/BC/C-Ag Composite Membranes
2.4. Mechanical Properties of PVA/BC/C-Ag Composite Membranes
2.5. Swelling Performance of PVA/BC/C-Ag Composite Membranes
2.6. Antibacterial Activity of PVA/BC/C-Ag and PVA/BC Composite Membranes
2.7. Silver Loss from PVA/BC/C-Ag Composite Membranes
2.8. Antibacterial Persistence of PVA/BC/C-Ag Composite Membranes
2.9. Antibacterial Activity of PVA/BC/C-Ag Composite Membranes in Actual Water
3. Results and Discussion
3.1. Characterization of PVA/BC/C-Ag Composite Membranes
3.1.1. Fourier-Transform Infrared (FT-IR) Spectrometry and X-ray Diffraction Analysis
3.1.2. SEM Analysis
3.1.3. TG and DSC Analysis
3.2. Mechanical Properties and Swelling Properties of PVA/BC/C-Ag Composite Membranes
3.3. Antibacterial Activity of PVA/BC/C-Ag Composite Membranes
3.4. Silver Loss from PVA/BC/C-Ag Composite Membranes
3.5. Antibacterial Persistence and Reusability of PVA/BC/C-Ag Composite Membranes
3.6. Antibacterial Activity of PVA/BC/C-Ag Composite Membranes in Actual Water
3.7. Synergistic and Antibacterial Mechanisms of PVA/BC/C-Ag Composite Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haramoto, E.; Kitajima, M.; Hata, A.; Torrey, J.R.; Masago, Y.; Sano, D.; Katayama, H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 2018, 135, 168–186. [Google Scholar] [CrossRef]
- Dhadge, V.L.; Medhi, C.R.; Changmai, M.; Purkait, M.K. House hold unit for the treatment of fluoride, iron, arsenic and microorganism contaminated drinking water. Chemosphere 2018, 199, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Pan, X.; Ben, W.; Wang, J.; Hou, P.; Qiang, Z. Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J. Environ. Sci. 2017, 52, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Abo Markeb, A.; Alonso, A.; Sanchez, A.; Font, X. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles. Sci. Total Environ. 2017, 598, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Madsen, H.T. Membrane Filtration in Water Treatment—Removal of Micropollutants. Chem. Adv. Environ. Purif. Process. Water 2014. [Google Scholar] [CrossRef]
- Jiang, B.; Tian, C.; Song, G.; Pan, Q.; Wang, Z.; Shi, L.; Qiao, Y.; Fu, H. A green route to synthesize novel Ag/C antibacterial agent. Mater. Res. Bull. 2012, 47, 458–463. [Google Scholar] [CrossRef]
- Khandanlou, R.; Ahmad, M.B.; Shameli, K.; Saki, E.; Kalantari, K. Studies on properties of rice straw/polymer nanocomposites based on polycaprolactone and Fe3O4 nanoparticles and evaluation of antibacterial activity. Int. J. Mol. Sci. 2014, 15, 18466–18483. [Google Scholar] [CrossRef]
- Song, X.J.; Wang, Y.C.; Wang, C.Z.; Huang, M.H.; Gul, S.; Jiang, H.Q. Solar-Intensified Ultrafiltration System Based on Porous Photothermal Membrane for Efficient Water Treatment. ACS Sustain. Chem. Eng. 2019, 7, 4889–4896. [Google Scholar] [CrossRef]
- Gholami Derami, H.; Jiang, Q.; Ghim, D.; Cao, S.; Chandar, Y.J.; Morrissey, J.J.; Jun, Y.-S.; Singamaneni, S. A Robust and Scalable Polydopamine/Bacterial Nanocellulose Hybrid Membrane for Efficient Wastewater Treatment. ACS Appl. Nano Mater. 2019, 2, 1092–1101. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, X.; Tian, H.; Zhong, L.; Ma, C.; Zhou, Y.; Chen, S.; Li, D. Synthesis of antibacterial film CTS/PVP/TiO2/Ag for drinking water system. Carbohydr. Polym. 2012, 89, 1060–1066. [Google Scholar] [CrossRef]
- Julinova, M.; Vanharova, L.; Jurca, M. Water-soluble polymeric xenobiotics—Polyvinyl alcohol and polyvinylpyrrolidon—And potential solutions to environmental issues: A brief review. J. Environ. Manag. 2018, 228, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.J. The Role of Polyvinyl Alcohol in Cartilage Repair of the Ankle and First Metatarsophalangeal Joint. Clin. Podiatr. Med. Surg. 2018, 35, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Sriplai, N.; Mongkolthanaruk, W.; Eichhorn, S.J.; Pinitsoontorn, S. Magnetically responsive and flexible bacterial cellulose membranes. Carbohydr. Polym. 2018, 192, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Zhao, F.; Peng, Q.; Zhou, Z.; Han, Y. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 2018, 194, 200–207. [Google Scholar] [CrossRef]
- Picheth, G.F.; Pirich, C.L.; Sierakowski, M.R.; Woehl, M.A.; Sakakibara, C.N.; de Souza, C.F.; Martin, A.A.; da Silva, R.; de Freitas, R.A. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 2017, 104, 97–106. [Google Scholar] [CrossRef]
- Quero, F.; Nogi, M.; Yano, H.; Abdulsalami, K.; Holmes, S.M.; Sakakini, B.H.; Eichhorn, S.J. Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites. ACS Appl. Mater. Interfaces 2010, 2, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Zhang, F.; Wang, F.; Wang, H. Catalytic reduction of NOx by biomass-derived activated carbon supported metals. Chin. J. Chem. Eng. 2018, 26, 2077–2083. [Google Scholar] [CrossRef]
- An, Y.-Z.; Wang, C.-H.; Miao, P.; Wang, X.-X.; Liang, J.-Y.; Liu, J. Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms. New Carbon Mater. 2018, 33, 188–192. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, L.; Zhong, L.; Zhou, Y.; Xue, J.; Li, Y. Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohydr. Polym. 2019, 219, 290–297. [Google Scholar] [CrossRef]
- Shao, L.S.; Li, J.J.; Guang, Y.; Zhang, Y.L.; Zhang, H.; Che, X.Y.; Wang, Y.H. PVA/polyethyleneimine-functionalized graphene composites with optimized properties. Mater. Des. 2016, 99, 235–242. [Google Scholar] [CrossRef]
- Xia, S.H.; Teng, S.H.; Wang, P. Synthesis of bioactive polyvinyl alcohol/silica hybrid fibers for bone regeneration. Mater. Lett. 2018, 213, 181–184. [Google Scholar] [CrossRef]
- Kashyap, S.; Pratihar, S.K.; Behera, S.K. Strong and ductile graphene oxide reinforced PVA nanocomposites. J. Alloy Compd. 2016, 684, 254–260. [Google Scholar] [CrossRef]
- Lv, X.D.; Li, G.H.; Pang, Z.Y.; Li, D.W.; Lei, L.; Lv, P.F.; Mushtaq, M.; Wei, Q.F. Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application. J. Phys. Chem. Solids 2018, 116, 153–160. [Google Scholar] [CrossRef]
- Yang, C.-C.; Lee, Y.-J.; Chiu, S.-J.; Lee, K.-T.; Chien, W.-C.; Lin, C.-T.; Huang, C.-A. Preparation of a PVA/HAP composite polymer membrane for a direct ethanol fuel cell (DEFC). J. Appl. Electrochem. 2008, 38, 1329–1337. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Zhang, Y.; Wan, Y. Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater. Sci. Eng. 2010, 30, 214–218. [Google Scholar] [CrossRef]
- Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv. 2015, 33, 1547–1571. [Google Scholar] [CrossRef]
- Foresti, M.L.; Vazquez, A.; Boury, B. Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances. Carbohydr. Polym. 2017, 157, 447–467. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zheng, S.; Hu, Z.; Zhong, L.; Wang, Y.; Zhang, X.; Xue, J. Preparation of Polyvinyl Alcohol/Bacterial-Cellulose-Coated Biochar–Nanosilver Antibacterial Composite Membranes. Appl. Sci. 2020, 10, 752. https://doi.org/10.3390/app10030752
Zhang L, Zheng S, Hu Z, Zhong L, Wang Y, Zhang X, Xue J. Preparation of Polyvinyl Alcohol/Bacterial-Cellulose-Coated Biochar–Nanosilver Antibacterial Composite Membranes. Applied Sciences. 2020; 10(3):752. https://doi.org/10.3390/app10030752
Chicago/Turabian StyleZhang, Liang, Sen Zheng, Zhihui Hu, Lvling Zhong, Yao Wang, Xiaomin Zhang, and Juanqin Xue. 2020. "Preparation of Polyvinyl Alcohol/Bacterial-Cellulose-Coated Biochar–Nanosilver Antibacterial Composite Membranes" Applied Sciences 10, no. 3: 752. https://doi.org/10.3390/app10030752
APA StyleZhang, L., Zheng, S., Hu, Z., Zhong, L., Wang, Y., Zhang, X., & Xue, J. (2020). Preparation of Polyvinyl Alcohol/Bacterial-Cellulose-Coated Biochar–Nanosilver Antibacterial Composite Membranes. Applied Sciences, 10(3), 752. https://doi.org/10.3390/app10030752