Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network
Abstract
1. Introduction
2. Finite Element Modeling (FEM)
3. Neural Network Modeling
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sitar, N.; Mikola, R.G.; Candia, G. Seismically Induced Lateral Earth Pressures on Retaining Structures and Basement Walls; Geotechnical Special Publication: Oakland, CA, USA, 2012; pp. 335–358. [Google Scholar]
- Shabani, A.; Erfani, S. Seismic Performance Evaluation of SSMF with Simple Beam–Column Connections Under the Base Level. Int. J. Steel Struct. 2019, 20, 1–12. [Google Scholar] [CrossRef]
- Shan, S.; Li, S.; Kose, M.M.; Sezen, H.; Wang, S. Effect of partial infill walls on collapse behavior of reinforced concrete frames. Eng. Struct. 2019, 197, 109377. [Google Scholar] [CrossRef]
- Shan, S.; Li, S.; Wang, S.; Sezen, H.; Kose, M.M. Influence of masonry infill walls on fire-induced collapse mechanisms of steel frames. J. Constr. Steel Res. 2019, 155, 426–437. [Google Scholar] [CrossRef]
- Moradi, M.J.; Hariri-Ardebili, M.A. Developing a Library of Shear Walls Database and the Neural Network Based Predictive Meta-Model. Appl. Sci. 2019, 9, 2562. [Google Scholar] [CrossRef]
- AISC. Resistance Factor Design Specification for Structural Steel Buildings; American Institute of Steel Construction: Chicago, IL, USA, 1999; Volume 1. [Google Scholar]
- CAN, C. CSA-S16-01, Limit States Design of Steel Structures; Canadian Standards Association: Toronto, ON, Canada, 2001. [Google Scholar]
- Timler, P. Economical design of steel plate shear walls from a consulting engineers perspective. In Proceedings of the 1999 North American Steel Construction Conference (NASCC), Toronto, ON, Canada, 10–12 May 1999; p. 36. [Google Scholar]
- Sabouri-Ghomi, S.; Ahouri, E.; Sajadi, R.; Alavi, M.; Roufegarinejad, A.; Bradford, M. Stiffness and strength degradation of steel shear walls having an arbitrarily-located opening. J. Constr. Steel Res. 2012, 79, 91–100. [Google Scholar] [CrossRef]
- Timler, P.A.; Kulak, G.L. Experimental Study of Steel Plate Shear Walls; Structural Engineering Report No. 114; Department of Civil Engineering, University of Alberta: Edmonton, AB, Canada, 1983. [Google Scholar]
- Hajimirsadeghi, M.; Mirtaheri, M.; Zandi, A.; Hariri-Ardebili, M. Experimental cyclic test and failure modes of a full scale enhanced modular steel plate shear wall. Eng. Fail. Anal. 2019, 95, 283–288. [Google Scholar] [CrossRef]
- Driver, R.G.; Kulak, G.L.; Kennedy, D.L.; Elwi, A.E. Cyclic test of four-story steel plate shear wall. J. Struct. Eng. 1998, 124, 112–120. [Google Scholar] [CrossRef]
- Park, H.S.; Hong, K.; Seo, J.H. Drift design of steel-frame shear-wall systems for tall buildings. Struct. Des. Tall Build. 2002, 11, 35–49. [Google Scholar] [CrossRef]
- Bypour, M.; Kioumarsi, B.; Kioumarsi, M. Investigation of Failure Mechanism of Thin Steel Plate Shear Wall in RC Frame. In Key Engineering Materials; Trans Tech Publication Ltd.: Zürich, Switzerland, 2019; Volume 803, pp. 314–321. [Google Scholar]
- Bypour, M.; Gholhaki, M.; Kioumarsi, M.; Kioumarsi, B. Nonlinear analysis to investigate effect of connection type on behavior of steel plate shear wall in RC frame. Eng. Struct. 2019, 179, 611–624. [Google Scholar] [CrossRef]
- Kioumarsi, B.; Gholhaki, M.; Kheyroddin, A.; Kioumarsi, M. Analytical study of building height effects over Steel Plate Shear Wall Behavior. Int. J. Eng. Technol. Innov. 2016, 6, 255. [Google Scholar]
- Afshari, M.J.; Gholhaki, M. Shear strength degradation of steel plate shear walls with optional located opening. Arch. Civ. Mech. Eng. 2018, 18, 1547–1561. [Google Scholar] [CrossRef]
- Behbahanifard, M.R.; Grondin, G.Y.; Elwi, A.E.A. Experimental and Numerical Investigation of Steel Plate Shear Walls; University of Alberta, Department of Civil and Environmental Engineering: Edmonton, AB, Canada, 2003. [Google Scholar]
- Takahashi, Y.; Takemoto, Y.; Takeda, T.; Takagi, M. Experimental Study on Thin Steel Shear Walls and Particular Bracing under Alternative Horizontal Load; Preliminary Report; IABSE: Lisbon, Portugal, 1973; pp. 185–191. [Google Scholar]
- Roberts, T.M.; Sabouri-Ghomi, S. Hysteretic characteristics of unstiffened perforated steel plate shear panels. Thin-Walled Struct. 1992, 14, 139–151. [Google Scholar] [CrossRef]
- Deylami, A.; Daftari, H. Non-linear behavior of steel shear wall with large rectangular opening. In Proceedings of the 12th World Conference on Earthquake Engineering 2000, Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- Vian, D.; Bruneau, M. Testing of Specially Steel Plate Shear Walls. In Proceedings of the 4th International Conference on Earthquake Engineering, Graz, Austria, 6–8 September 2006. [Google Scholar]
- Pellegrino, C.; Maiorana, E.; Modena, C. Linear and non-linear behaviour of steel plates with circular and rectangular holes under shear loading. Thin-Walled Struct. 2009, 47, 607–616. [Google Scholar] [CrossRef]
- Paik, J.K. Ultimate strength of perforated steel plates under edge shear loading. Thin-Walled Struct. 2007, 45, 301–306. [Google Scholar] [CrossRef]
- Valizadeh, H.; Sheidaii, M.; Showkati, H. Experimental investigation on cyclic behavior of perforated steel plate shear walls. J. Constr. Steel Res. 2012, 70, 308–316. [Google Scholar] [CrossRef]
- Alavi, E.; Nateghi, F. Experimental study on diagonally stiffened steel plate shear walls with central perforation. J. Constr. Steel Res. 2013, 89, 9–20. [Google Scholar] [CrossRef]
- Bhowmick, A.K. Seismic behavior of steel plate shear walls with centrally placed circular perforations. Thin-Walled Struct. 2014, 75, 30–42. [Google Scholar] [CrossRef]
- Purba, R.; Bruneau, M. Seismic performance of steel plate shear walls considering two different design philosophies of infill plates. I: Deterioration model development. J. Struct. Eng. 2014, 141, 04014160. [Google Scholar] [CrossRef]
- Khalilzadeh Vahidi, E.; Roshani, M. Prediction of load-carrying capacity in steel shear wall with opening using artificial neural network. J. Eng. 2016, 2016. [Google Scholar] [CrossRef][Green Version]
- Nassernia, S.; Showkati, H. Experimental study of opening effects on mid-span steel plate shear walls. J. Constr. Steel Res. 2017, 137, 8–18. [Google Scholar] [CrossRef]
- Asteris, P.G.; Nikoo, M. Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput. Appl. 2019, 31, 4837–4847. [Google Scholar] [CrossRef]
- Asteris, P.G.; Armaghani, D.J.; Hatzigeorgiou, G.D.; Karayannis, C.G.; Pilakoutas, K. Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Comput. Concr. 2019, 24, 469–488. [Google Scholar]
- Asteris, P.G.; Plevris, V. Anisotropic masonry failure criterion using artificial neural networks. Neural Comput. Appl. 2017, 28, 2207–2229. [Google Scholar] [CrossRef]
- Asteris, P.G.; Apostolopoulou, M.; Skentou, A.D.; Moropoulou, A. Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Comput. Concr. 2019, 24, 329–345. [Google Scholar]
- Asteris, P.G.; Mokos, V.G. Concrete compressive strength using artificial neural networks. Neural Comput. Appl. 2019, 1–20. [Google Scholar] [CrossRef]
- Plevris, V.; Asteris, P.G. Modeling of masonry failure surface under biaxial compressive stress using Neural Networks. Constr. Build. Mater. 2014, 55, 447–461. [Google Scholar] [CrossRef]
- Zhao, Z.; Ren, L. Failure criterion of concrete under triaxial stresses using neural networks. Comput. Civ. Infrastruct. Eng. 2002, 17, 68–73. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ong, Z.C.; Ismail, Z.; Noroozi, S.; Khoo, S.Y. Artificial neural networks for vibration based inverse parametric identifications: A review. Appl. Soft Comput. 2017, 52, 203–219. [Google Scholar] [CrossRef]
- Sabouri-Ghomi, S.; Mamazizi, S. Experimental investigation on stiffened steel plate shear walls with two rectangular openings. Thin-Walled Struct. 2015, 86, 56–66. [Google Scholar] [CrossRef]
- Abaqus, I. ABAQUS/Explicit User’s Manual; Dassault Systèmes Simulia Corp.: Providence, RI, USA, 2002. [Google Scholar]
- Roshani, S.; Roshani, S. Two-Section Impedance Transformer Design and Modeling for Power Amplifier Applications. Appl. Comput. Electromagn. Soc. J. 2017, 32, 1042–1047. [Google Scholar]
- Roshani, G.H.; Roshani, S.; Nazemi, E.; Roshani, S. Online measuring density of oil products in annular regime of gas-liquid two phase flows. Measurement 2018, 129, 296–301. [Google Scholar] [CrossRef]
- Yao, W.; Fang, J.; Zhao, P.; Liu, S.; Wen, J.; Wang, S. TCSC nonlinear adaptive damping controller design based on RBF neural network to enhance power system stability. J. Electr. Eng. Technol. 2013, 8, 252–261. [Google Scholar] [CrossRef][Green Version]
- Zirak, A.R.; Roshani, S. A Reduced Switch Voltage Stress Class E Power Amplifier Using Harmonic Control Network. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 38–42. [Google Scholar]
- Militkỳ, J. Fundamentals of soft models in textiles. In Soft Computing in Textile Engineering; Elsevier: Amsterdam, The Netherlands, 2011; pp. 45–102. [Google Scholar]
Name | Year | No. Sample | Investigated Parameters | No. Story | Type of Research | Ref. |
---|---|---|---|---|---|---|
Takahashi | 1973 | 12 | SPSW with opening and without opening | 1 | Experimental | [19] |
Roberts and Sabouri-ghomi | 1991 | 16 | Opening Diameter and Plate Thickness | 1 | Experimental | [20] |
Deylami and Daftari | 2000 | 50 | Plate thickness, opening aspect ratio and opening percentage | 1 | Analytical | [21] |
Vian and Bruneau | 2004 | 2 | Opening | 1 | Experimental | [22] |
Paik | 2007 | N.A. | Opening with a different infill plate thickness | 1 | Analytical | [24] |
Pellegrino et al. | 2009 | N.A. | Dimension, position shape and, orientation | 1 | Analytical | [23] |
Valizadeh et al. | 2012 | 8 | Opening dimensions and slenderness factors | 1 | Experimental | [25] |
Sabouri-Ghomi et al. | 2012 | 45 | Opening dimensions and shapes | 1 | Analytical | [9] |
Alavi and Nateghi | 2013 | 3 | SPSW with and without Opening and Stiffener | 1 | Experimental and Analytical | [26] |
Bhowmick | 2014 | N.A. | Opening Diameter, plate thickness and Aspect ratio | 1 | Analytical | [27] |
Pourba and Bruneau | 2015 | 17 | Deterioration modes | 1 | Analytical | [28] |
Sabouri et al. | 2015 | 4 | Behavior of SPSW with 2 openings | 1 | Experimental | [39] |
Khalilzadeh and Roshani | 2016 | 54 | Opening Location, Infill plate and, Stiffener Thickness | 1 | Analytical | [29] |
Nassernia and Showkati | 2017 | 3 | Opening Diameter in mid-span SPSW | 1 | Experimental and Analytical | [30] |
Afshari and Gholhaki | 2018 | N.A. | Opening Shape, Diameter, Location and H/b ratio of SPSW | 1 | Analytical | [17] |
Element | E (MPa) | F (MPa) | F (MPa) | (%) | (%) |
---|---|---|---|---|---|
HEB 160 (SPSW s4) | 2.06 × 10 | 340 | 450 | 0.17 | 14.4 |
HEB 160 (SPSW2) | 2.07 × 10 | 400 | 450 | 0.19 | 13.2 |
The stiffener plate (t = 5 mm) | 2.05 × 10 | 340 | 470 | 0.17 | 20.5 |
The infill plate (t = 1 mm) | 2.04 × 10 | 280 | 500 | 0.14 | 21.6 |
Parameter | Range | Number of Samples |
---|---|---|
Infill plate thickness (mm) | 0.7, 0.8, 1, 1.2, 1.4 | 5 |
Opening area (mm) | No Opening − 200 × 200 − 250 × 250 − 300 × 300 − 350 × 350 − 400 × 400 450 × 450 − 500 × 500 − 550 × 550 − 600 × 600 − 650 × 650 700 × 700 − 750 × 750 − 800 × 800 − 850 ×850 − 900 × 900 − 950 × 950 1000 × 1000 − 1050 × 1050 − 1100 × 1100 − 1150 × 1150 − 1200 × 1200 | 22 |
Parameters | Specifications |
---|---|
Input parameters | 3 |
Outputs parameters | 2 |
hidden layer functions | Radial basis |
Output layer functions | Linear |
Maximum number of epochs | 70 |
Train data number | 77 |
Test data number | 33 |
Total data number | 110 |
Error Values | Normalized Shear Strength | Normalized Energy Absorption | Normalized Stiffness |
---|---|---|---|
MAE Train | |||
MAE Test | |||
MSE Train | |||
MSE Test |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, M.J.; Roshani, M.M.; Shabani, A.; Kioumarsi, M. Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network. Appl. Sci. 2020, 10, 1185. https://doi.org/10.3390/app10031185
Moradi MJ, Roshani MM, Shabani A, Kioumarsi M. Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network. Applied Sciences. 2020; 10(3):1185. https://doi.org/10.3390/app10031185
Chicago/Turabian StyleMoradi, Mohammad Javad, Mohammad Mahdi Roshani, Amirhosein Shabani, and Mahdi Kioumarsi. 2020. "Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network" Applied Sciences 10, no. 3: 1185. https://doi.org/10.3390/app10031185
APA StyleMoradi, M. J., Roshani, M. M., Shabani, A., & Kioumarsi, M. (2020). Prediction of the Load-Bearing Behavior of SPSW with Rectangular Opening by RBF Network. Applied Sciences, 10(3), 1185. https://doi.org/10.3390/app10031185