Corrosion Behavior of Pre-Rusted Rebars in Cement Mortar Exposed to Harsh Environments
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Measurement Method
2.4. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDX) Analysis
2.5. X-ray Diffraction Spectrometer (XRD) Measurement
3. Results
3.1. Electrochemical Measurements
3.2. Corrosion Current
3.3. Half-Cell Potential
3.4. Scanning Electron Microscopy Analysis and X-ray Diffraction
3.5. Visual Observation and Mass Loss
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uthaman, S.; George, R.P.; Vishwakarma, V.; Harilal, M.; Philip, J. Enhanced seawater corrosion resistance of reinforcement in nanophase modified fly ash concrete. Constr. Build. Mater. 2019, 221, 232–243. [Google Scholar] [CrossRef]
- Revie, R.W. Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Angst, U.M.; Geiker, M.R.; Alonso, M.C.; Polder, R.; Isgor, O.B.; Elsener, B.; Wong, H.; Michel, A.; Hornbostel, K.; Gehlen, C.; et al. The effect of the steel–concrete interface on chloride-induced corrosion initiation in concrete: A critical review by RILEM TC 262-SCI. Mater. Struct. 2019, 52, 88. [Google Scholar] [CrossRef]
- Angst, U.M. Challenges and opportunities in corrosion of steel in concrete. Mater. Struct. 2018, 51, 4. [Google Scholar] [CrossRef]
- Kumar Sharma, D.; Filipponi, M.; Di Schino, A.; Rossi, F.; Castaldi, J. Corrosion behaviour of high temperature fuel cells: Issues for materials selection. Metalurgija 2019, 58, 347–351. [Google Scholar]
- Di Schino, A. Manufacturing and Applications of Stainless Steels. Metals 2020, 10, 327. [Google Scholar] [CrossRef]
- Mohammed, T.U.; Hamada, H. Corrosion of steel bars in concrete with various steel surface conditions. ACI Mater. J. 2006, 103, 233–242. [Google Scholar]
- Bensabra, H.; Azzouz, N. Study of rust effect on the corrosion behavior of reinforcement steel using impedance spectroscopy. Metall. Mater. Trans. A 2013, 44, 5703–5710. [Google Scholar] [CrossRef]
- Ismail, A.I.M.; El-Shamy, A.M. Engineering behaviour of soil materials on the corrosion of mild steel. Appl. Clay Sci. 2009, 42, 356–362. [Google Scholar] [CrossRef]
- Zhang, J.; Hosemann, P.; Maloy, S. Models of liquid metal corrosion. J. Nucl. Mater. 2010, 404, 82–96. [Google Scholar] [CrossRef]
- Shalon, R.; Rapheal, M. Influence of sea water on corrosion of reinforcement. J. Proc. 1959, 55, 1251–1268. [Google Scholar]
- Martinez-Echevarria, M.J.; Lopez-Alonso, M.; Romero, D.C.; Montero, J.R. Influence of the previous state of corrosion of rebars in predicting the service life of reinforced concrete structures. Constr. Build. Mater. 2018, 188, 915–923. [Google Scholar] [CrossRef]
- Fang, C.; Lundgren, K.; Chen, L.; Zhu, C. Corrosion influence on bond in reinforced concrete. Cem. Concr. Res. 2004, 34, 2159–2167. [Google Scholar] [CrossRef]
- Chung, L.; Kim, J.-H.J.; Yi, S.-T. Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars. Cem. Concr. Compos. 2008, 30, 603–611. [Google Scholar] [CrossRef]
- Abosrra, L.; Ashour, A.F.; Youseffi, M. Corrosion of steel reinforcement in concrete of different compressive strengths. Constr. Build. Mater. 2011, 25, 3915–3925. [Google Scholar] [CrossRef]
- Kielė, A.; Vaitkevičius, V.; Sasnauskas, V.; Vaičiukyniene, D.; Bistrickaitė, R. Reinforcement Corrosion Degree Effect on Adhesion with Concrete. J. Sustain. Arch. Civ. Eng. 2014, 7. [Google Scholar] [CrossRef]
- Pradhan, B. Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Constr. Build. Mater. 2014, 72, 398–410. [Google Scholar] [CrossRef]
- Oh, K.-S.; Moon, J.-M.; Park, K.-T.; Kwon, S.-J. Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel. J. Korea Inst. Struct. Maint. Insp. 2016, 20, 10–17. [Google Scholar] [CrossRef][Green Version]
- Li, J.; Gong, J.; Wang, L. Seismic behavior of corrosion-damaged reinforced concrete columns strengthened using combined carbon fiber-reinforced polymer and steel jacket. Constr. Build. Mater. 2009, 23, 2653–2663. [Google Scholar] [CrossRef]
- Novak, P.; Mala, R.; Joska, L. Influence of pre-rusting on steel corrosion in concrete. ACI J. Proc. 2001, 31, 589–593. [Google Scholar] [CrossRef]
- Al-Tayyib, A.; Khan, M.; Allam, I.; Al-Mana, A. Corrosion behavior of pre-rusted rebars after placement in concrete. Cem. Concr. Res. 1990, 20, 955–960. [Google Scholar] [CrossRef]
- Gonzalez, J.; Ramírez, E.; Bautista, A.; Feliu, S. The behaviour of pre-rusted steel in concrete. Cem. Concr. Res. 1996, 26, 501–511. [Google Scholar] [CrossRef]
- Kim, J.-S.; Shin, Y.-S.; Lee, S.; Kim, K.-S. The effect of chloride on corrosion of reinforced concrete. J. Korea Inst. Struct. Maint. Insp. 2005, 9, 2. [Google Scholar]
- Poursaee, A.; Hansson, C.M. Reinforcing steel passivation in mortar and pore solution. Cem. Concr. Res. 2007, 37, 1127–1133. [Google Scholar] [CrossRef]
- Beom, W.-J.; Yun, K.-S.; Park, C.-J.; Ryu, H.-J.; Kim, Y.-H. Comparison of influences of NaCl and CaCl2 on the corrosion of 11% and 17% Cr ferritic stainless steels during cyclic corrosion test. Corros. Sci. 2010, 52, 734–739. [Google Scholar] [CrossRef]
- Maslehuddin, M.; Al-Zahrani, M.; Al-Dulaijan, S.; Abdulquddus; Rehman, S.; Ahsan, S. Effect of steel manufacturing process and atmospheric corrosion on the corrosion-resistance of steel bars in concrete. Cem. Concr. Compos. 2002, 24, 151–158. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, O.B.; McRae, G.; Gu, G.P.; Li, J. Effect of surface condition on the chloride-induced depassivation of rebar in concrete. In Proceedings of the 12th International Conference on Fracture (ICF), Ottawa, Canada CD Proceeding, Ottawa, ON, Canada, 12 July 2009. [Google Scholar]
- Doi, K.; Hiromoto, S.; Shinohara, T.; Tsuchiya, K.; Katayama, H.; Akiyama, E. Role of mill scale on corrosion behavior of steel rebars in mortar. Corros. Sci. 2020, 177, 108995. [Google Scholar] [CrossRef]
- Geng, J.; Liu, J.; Yan, J.; Ba, M.; He, Z.; Li, Y. Chemical composition of corrosion products of rebar caused by carbonation and chloride. Int. J. Corros. 2018, 2018, 7479383. [Google Scholar] [CrossRef]
- Fouda, A.S.; Megahed, H.E.; Fouad, N.; Elbahrawi, N.M. Corrosion inhibition of carbon steel in 1 M hydrochloric acid solution by aqueous extract of Thevetia peruviana. J. Bio-Tribo-Corros. 2016, 2, 16. [Google Scholar] [CrossRef]
- de la Fuente, D.; Díaz, I.; Alcántara, J.; Chico, B.; Simancas, J.; Llorente, I.; García-Delgado, A.; Jiménez, J.A.; Adeva, P.; Morcillo, M. Corrosion mechanisms of mild steel in chloride-rich atmospheres. Mater. Corros. 2016, 67, 227–238. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cu | N | C Eq 1 | |
---|---|---|---|---|---|---|---|---|
SD400 | 0.27 | 0.13 | 0.49 | 0.014 | 0.013 | 0.33 | 0.01 | 0.40 |
SiO2 | Al2O3 | CaO | MgO | Fe2O3 | SO3 | K2O | Na2O | TiO3 | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|
18.2 | 4.87 | 70.5 | 1.32 | 3.32 | 0.27 | 0.53 | 0.02 | 0.32 | 0.65 |
Cement (g) | Fine Aggregate (g) | Water (mL) |
---|---|---|
1500 | 4125 | 726 |
Specimen | S | P | Mn | O | Fe | C | Cl | Ca |
---|---|---|---|---|---|---|---|---|
A | - | - | - | - | 97.52 | 2.48 | - | - |
B | 2.31 | 0.3 | 0.7 | 32.74 | 62.01 | - | 1.55 | 0.4 |
C | - | 1.14 | 0.74 | 20.49 | 77.45 | - | 0.18 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burtuujin, G.; Son, D.; Jang, I.; Yi, C.; Lee, H. Corrosion Behavior of Pre-Rusted Rebars in Cement Mortar Exposed to Harsh Environments. Appl. Sci. 2020, 10, 8705. https://doi.org/10.3390/app10238705
Burtuujin G, Son D, Jang I, Yi C, Lee H. Corrosion Behavior of Pre-Rusted Rebars in Cement Mortar Exposed to Harsh Environments. Applied Sciences. 2020; 10(23):8705. https://doi.org/10.3390/app10238705
Chicago/Turabian StyleBurtuujin, Gankhuyag, Dasom Son, Indong Jang, Chongku Yi, and Hyerin Lee. 2020. "Corrosion Behavior of Pre-Rusted Rebars in Cement Mortar Exposed to Harsh Environments" Applied Sciences 10, no. 23: 8705. https://doi.org/10.3390/app10238705
APA StyleBurtuujin, G., Son, D., Jang, I., Yi, C., & Lee, H. (2020). Corrosion Behavior of Pre-Rusted Rebars in Cement Mortar Exposed to Harsh Environments. Applied Sciences, 10(23), 8705. https://doi.org/10.3390/app10238705