# Design, Plant Test and CFD Calculation of a Turbocharger for a Low-Speed Engine

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. Design of a Centrifugal Compressor TKR 140E

#### 3.2. Comparison of Experimental and Design Characteristics of TKR 140E

#### 3.3. CFD Calculations

- -
- Stationary or unsteady flow.
- -
- Interface type, (“stage”, “frozen rotor”).
- -
- Turbulence model.
- -
- Computational grid, etc.

## 4. Discussion

## 5. Conclusions

- -
- Head loss of a stage is a sum of inlet nozzle, impeller, diffuser, return channel or outlet nozzle.
- -
- Inside blade or vane cascade head loss is a sum of losses on suction and pressure side of a profile, on a shroud and on a hub.
- -
- Head loss is a sum of surface friction (secondary losses are included) and separation losses, i.e., mixing or pressure losses.
- -
- Incidence losses are added at off-design flow rates.
- -
- Similarity criteria M, Re, k are taken into account and a surface roughness as well.

- -
- The Concept loss model operates with parameters of the boundary lay theory. The method calculates loss coefficients and drag force coefficients.
- -
- The Concept loss model is identified by test characteristics of a stage elements (impeller, diffuser, etc.). The Method loss model is identified by test characteristics of a whole stage.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Harley, P.; Spence, S.; Filsinger, D.; Dietrich, M.; Early, J. Meanline modeling of inlet recirculation in automotive turbocharger centrifugal compressors. J. Turbomach.
**2015**, 137, 011007. [Google Scholar] [CrossRef] - Aungier, R.H. Centrifugal Compressors: A Stragedy for Aerodynamic Design and Analysis; ASME Press: New York, NY, USA, 2000; p. 320. [Google Scholar]
- Weber, C.R.; Koronowski, M.E. Meanline Performance Prediction of Volutes in Centrifugal Compressors. In Proceedings of the ASME Turbo Expo 1986, Dusseldorf, Germany, 1986; American Society of Mechanical Engineers: New York, NY, USA, 2014. V001T01A091. [Google Scholar] [CrossRef][Green Version]
- Harley, P.; Spence, S.; Filsinger, D.; Dietrich, M.; Early, J. Experimental and numerical benchmarking of an improved meanline modelling method for automotive turbocharger centrifugal compressors. In Proceedings of the ASME Turbo Expo 2015, Montréal, QC, Canada, 15–19 June 2015. [Google Scholar]
- Abel, M.; Newton, P.; Martinez-Botas, R.F.; Wohr, M.; Muller, M.; Leweux, J. 3D computational analysis of a compressor for heavy duty truck engine turbochargers. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Bi, Q.; Chen, H.; Tong, D.; Lu, Y.; Zou, X. Design method and performance effects of curvature-smooth centrifugal compressor blades. In Proceedings of the ASME Turbo Expo 2015: Turbomachinery Technical Conference and Exposition, Montréal, QC, Canada, 15–19 June 2015. GT2015-43145. [Google Scholar]
- Kabalyk, K.; Kryłłowicz, W. Numerical modeling of the performance of a centrifugal compressor impeller with low inlet flow coefficient. Trans. Inst. Fluid Flow Mach.
**2016**, 131, 41–53. [Google Scholar] - Kryłłowicz, W.; Świder, P.; Kozanecki, Z.; Kabalyk, K.; Kozanecki, Z., Jr. Technical and Aerodynamical Aspects of a High Pressure Synthesis Gas Turbocompressor Modernization. In Proceedings of the 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, Sweden, 3–7 April 2017. [Google Scholar]
- Marechale, R.; Ji, M.; Cave, M. Experimental and numerical investigation of labyrinth seal clearance impact on centrifugal impeller performance. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition GT2015, Montréal, QC, Canada, 15–19 June 2015. GT2015-43778. [Google Scholar]
- Matas, R.; Syka, T.; Lunacek, O. Numerical and experimental modelling of the centrifugal compressor stage—setting the model of impellers with 2D blades. In Proceedings of the EPJ Web of Conferences 11th International Conference on Experimental Fluid Mechanics 2017, Mikulov, Czech Republic, 12 May 2017; Volume 143, p. 02073. [Google Scholar]
- Hazby, H.; Casey, M.; Robinson, C.; Spataro, R. The design of a family of process compressor stages. In Proceedings of the 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC12 2017, Stockholm, Sweden, 3–7 April 2017. Paper ID: ETC2017-134. [Google Scholar]
- Matas, R.; Syka, T.; Hurda, L. Experimental investigation and numerical modelling of 3D radial compressor stage and influence of the technological holes on the working characteristics. EPJ Web Conf.
**2018**, 180, 02060. [Google Scholar] [CrossRef][Green Version] - Syka, T.; Matas, R.; Luňáček, O. Numerical and experimental modelling of the radial compressor stage. AIP Conf. Proc.
**2016**, 1745, 020059. [Google Scholar] - Sausse, P.L.; Fabrie, P.; Arnou, D.; Clunet, F. CFD comparison with centrifugal compressor measurements on a wide operating range. EPJ Web Conf.
**2013**, 45, 01059. [Google Scholar] [CrossRef][Green Version] - Xinqian, Z.; Meijie, Z. Criteria for the Matching of Inlet and Outlet Distortions in Centrifugal Compressors. Appl. Therm. Eng.
**2018**, 131, 933–946. [Google Scholar] - Elfert, M.; Weber, A.; Wittrock, D.; Peters, A.; Voss, C.; Nicke, E. Experimental and numerical verification of an optimization of a fast rotating high performance radial compressor impeller. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition 2016, Seoul, Korea, 13–17 June 2016. GT2016-56546. [Google Scholar]
- Kowalski, S.C.; Pacheco, J.E.; Fakhri, S.; Sorokes, J.M. Centrifugal stage performance prediction and validation for high mach number applications. In Proceedings of the Forty-First Turbomachinery Symposium 2012, Houston, TX, USA, 24–27 September 2012. [Google Scholar]
- Shahin, I.; Gadala, M.; Alqaradawi, M.; Badr, O. Unsteady CFD simulation for high speed centrifugal compressor operating near surge. In Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition 2014, Düsseldorf, Germany, 16–20 June 2014. GT2014-27336. [Google Scholar]
- Bourgeois, J.A.; Nichols, J.C.; Watson, G.H.; Martinuzzi, R.J. Single passage detached eddy simulation of a centrifugal compressor stage using the time transformation method. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition 2015, Montréal, QC, Canada, 15–19 June 2015. GT2015-44131. [Google Scholar]
- Dombard, J.; Duchaine, F.; Gicquel, L.; Staffelbach, G.; Buffaz, N.; Trebinjac, I. Large eddy simulations in a transonic centrifugal compressor. In Proceedings of the ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition GT2018 2018, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Galerkin, Y.B. (Ed.) Proceedings of the Scientific School of Compressor Engineering SPbSTU. [Text]; Publishing House of Scientific and Technical Information Center, SPbSTU: Saint-Petersburg, Russia, 2010. [Google Scholar]
- Vasiliev, Y.S. New Generation High Performance Centrifugal Compressors. Scientific Principles of Calculation, Development of Optimal Design Methods and Production Development; Yu, S., Vasiliev, P.I., Rodionov, P.I., Sokolovsky, M.I., Eds.; Science and Industry of Russia: Moscow, Russia, 2000; No. 10–11; pp. 78–85. [Google Scholar]
- Galerkin, Y.B. Turbocompressors. Workflow, Calculation and Design of the Flow Path; LLC "Information and Publishing Center" KHT: Moscow, Russia, 2010; p. 596. [Google Scholar]
- Galerkin, Y.B.; Soldatova, K.V. Modeling the Workflow of Industrial Centrifugal Compressors. Scientific Foundations, Stages of Development, Current State; Monograph; Publishing House of the Polytechnic University: Moscow, Russia, 2011; p. 327. [Google Scholar]
- Seleznev, K.P.; Galerkin, Y.B. Mathematical Modelling of Performance Characteristics and Optimization of Turbomachine Stades. In Proceedings of the International Gas Turbine Congress, Tokyo, Japan, 17–22 November 1983. [Google Scholar]
- Rekstin, A.F.; Drozdov, A.A.; Solovyeva, O.A.; Galerkin, Y.B. Two mathematical models centrifugal compressor stage vaneless diffuser comparison. In Proceedings of the Oil and Gas Engineering (OGE-2018), AIP Conf. Proc. 2007, Omsk, Russia, 26 February–2 March 2018; Volume 2007, pp. 030035-1–030035-12. [Google Scholar] [CrossRef]
- Rekstin, A.F.; Soldatova, K.V.; Galerkin, Y.B. Experience of application the computer program based on a simplified mathematical model for industrial centrifugal compressors candidates. Int. Conf. Compress. Syst. IOP Conf. Ser. Mater. Sci. Eng.
**2019**, 604, 012045. [Google Scholar] [CrossRef] - Rekstin, A.; Popova, Y.; Ucehovscy, A. Centrifugal compressor stages efficiency analysis by means of the approximate algebraic equations. In Proceedings of the Oil and Gas Engineering (OGE-2018), AIP Conf. Proc. 2007, Omsk, Russia, 26 February–2 March 2018; Volume 2007, pp. 030036-1–030036-11. [Google Scholar] [CrossRef]
- Galerkin, Y.; Drozdov, A.U. Centrifugal compressor stage design principles checking. In Proceedings of the ASME Gas Turbine India Conference, Hyderabad, India, 2–3 December 2015. GTINDIA2015-1202. [Google Scholar]
- Galerkin, Y.B.; Drozdov, A.A. Design and optimization of a centrifugal compressor stage with an 3D impeller using an engineering design method. Sci. Tech. Statements SPbPU
**2015**, 231, 179–188. [Google Scholar] - Drozdov, A.A. Design Method for Centrifugal Compressors with 3D Impellers; Drozdov, A.A., Ed.; Ph.D. Thesis–SpbPU: Saint-Petersburg, Russia, 2016; p. 236. [Google Scholar]
- Borovkov, A.I.; Voinov, I.B.; Galerkin, Y.B.; Nikiforov, A.G.; Nikitin, M.A. Issues of Modeling Gas-dynamic Characteristics on the Example of a Model Stage of a Centrifugal Compressor; Scientific and Technical Statements SpbPU: Saint-Petersburg, Russia, 2018; Volume 24, No. 2; pp. 44–57. [Google Scholar] [CrossRef]
- Borovkov, A.I.; Voinov, I.B.; Rekstin, A.F.; Bakaev, B.V. Modeling the Characteristics of a Two-stage Pipeline Centrifugal Compressor; Scientific and Technical Statements SpbPU: Saint-Petersburg, Russia, 2019; Volume 25, No. 2; pp. 87–104. [Google Scholar] [CrossRef]
- Borovkov, A.I.; Voinov, I.B.; Nikitin, M.A.; Galerkin, Y.B.; Rekstin, A.F.; Drozdov, A.A. Modeling the Characteristics of a Single-stage Pipeline Centrifugal Compressor; Natural and Engineering Sciences; Scientific and Technical Statements of SpbPU: Saint-Petersburg, Russia, 2018; Volume 24, No. 3; pp. 153–175. [Google Scholar] [CrossRef]
- Galerkin, Y.B.; Danilov, K.A.; Popova, E.Y. Universal Modelling for Centrifugal Compressors-Gas Dynamic Design and Optimization Consepts and Application. In Proceedings of the Yokohama International Gas Turbine Congress, Yokohama, Japan, 22–27 October 1995. [Google Scholar]
- Galerkin, Y.B.; Mitrofanov, V.P. Current Optimum Design Methods in the Development of New Generations of Model Stages in Centrifugal Compressors. Chem Petrol Eng.
**1995**, 31, 624–629. [Google Scholar] [CrossRef] - Galerkin, Y.; Prokofiev, A.; Danilov, K.; Popova, E. Q3D approach of universal modelling—New possibilities of centrifugal impellers, optimization. In Proceedings of the International Conference on Compressors and their Systems, London, UK, 7–10 September 2003; pp. 381–390. [Google Scholar]
- Galerkin, Y.; Soldatova, K.; Drozdov, A. New version of the universal modelling for centrifugal compressor gas dynamic design. In Proceedings of the Purdue Conference 2014, West Lafayette, IN, USA, 14–17 July 2014. [Google Scholar]
- Japikse, D. Agile engineering and the restructuring of modern design. In Proceedings of the 40th Israel Annual Conference on Aerospace Science, Tel-Aviv and Haifa, Israel, 23–24 February 2000. [Google Scholar]
- Japikse, D. Agile design system in the age of concurrent engineering. In Proceedings of the JANNAF Conference, Albuquerque, NM, USA, 9–12 December 1996. [Google Scholar]
- Japikse, D. Design system development for turbomachinery (turbopump) designs—1998 and a decade beyond. In Proceedings of the JANNAF Conference, Cleveland, OH, USA, 15–17 July 1998. [Google Scholar]
- Japikse, D.; Oliphant, K.N.; Pelton, R. Optimization in turbomachinery data reduction. In Proceedings of the 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 7–11 March 2004. [Google Scholar]
- Japikse, D.; Platt, M.J. Optimization in component design and redesign. In Proceedings of the 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 7–11 March 2004. [Google Scholar]

**Figure 1.**PDCC-G8E program. Variant calculation of TKR 140E. Efficiency and flow coefficient versus the design loading factor.

**Figure 3.**CCPC-G9E program. Characteristics of the TKR 140E compressor with a flow path according to the primary design.

**Figure 4.**3DM.023 program. Velocity diagrams on the shroud streamline in the impeller of the TKR 140E compressor. Left: according to the preliminary design. Right: after optimizing the impeller sizes and blade shape. $\overline{\mathsf{w}}=\mathsf{w}/{\mathsf{u}}_{2}$—relative velocity, $\overline{\mathsf{l}}=\mathsf{l}/{\mathsf{l}}_{1-2}$—relative length.

**Figure 5.**Program 3DM.023. Left: the meridional contour of the impeller. Right: blade angles on three blade-to-blade surfaces.

**Figure 6.**Sectional drawing of the turbocharger TKR 140E. 1—compressor housing; 2—shroud; 3—compressor impeller; 4—bearing housing; 5—turbine.

**Figure 9.**Comparison of design and actual characteristics of the TKR 140E compressor at blade velocity ${u}_{2}$ = 150, 200, 250 and 300 m/s.

**Figure 10.**(

**a**) The 3D impeller and its polytropic work coefficient characteristic [32]; (

**b**) a two-stage pipeline compressor 16 MW and its pressure ratio characteristic [33]; (

**c**) characteristics of the 1:2 model of a single-stage pipeline compressor of a 32 MW [34]. ${\psi}_{p}^{*}$—polytropic head coefficient by total pressures.

**Figure 13.**Distribution of velocity and pressure in the TKR 140E impeller. $n$ = 20,760 rpm, middle streamline, mass flow rate—0.3 kg/s.

**Figure 14.**Characteristics of the polytropic efficiency of TKR 140E versus the flow rate coefficient.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Borovkov, A.; Voinov, I.; Galerkin, Y.; Kaminsky, R.; Drozdov, A.; Solovyeva, O.; Soldatova, K.
Design, Plant Test and CFD Calculation of a Turbocharger for a Low-Speed Engine. *Appl. Sci.* **2020**, *10*, 8344.
https://doi.org/10.3390/app10238344

**AMA Style**

Borovkov A, Voinov I, Galerkin Y, Kaminsky R, Drozdov A, Solovyeva O, Soldatova K.
Design, Plant Test and CFD Calculation of a Turbocharger for a Low-Speed Engine. *Applied Sciences*. 2020; 10(23):8344.
https://doi.org/10.3390/app10238344

**Chicago/Turabian Style**

Borovkov, Aleksey, Igor Voinov, Yuri Galerkin, Roman Kaminsky, Aleksandr Drozdov, Olga Solovyeva, and Kristina Soldatova.
2020. "Design, Plant Test and CFD Calculation of a Turbocharger for a Low-Speed Engine" *Applied Sciences* 10, no. 23: 8344.
https://doi.org/10.3390/app10238344