Burst Detection in Water Distribution Systems: The Issue of Dataset Collection
Abstract
1. Introduction
2. Methodology
2.1. Water Request Stochastic Modeling
2.2. Water Consumption Hydraulic Simulation
3. Application
3.1. Apulian
3.2. Egna
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.W.; Sarp, S.; Jeon, D.J.; Kim, J.H. Smart water grid: The future water management platform. Desalin. Water Treat. 2015, 55, 339–346. [Google Scholar] [CrossRef]
- Ramos, H.M.; McNabola, A.; López-Jiménez, P.A.; Pérez-Sánchez, M. Smart water management towards future water sustainable networks. Water 2020, 12, 58. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Mutchek, M.; Williams, E. Moving towards sustainable and resilient smart water grids. Challenges 2014, 5, 123–137. [Google Scholar] [CrossRef]
- Ramos, H.M.; Carravetta, A.; Nabola, A.M. New Challenges in Water Systems. Water 2020, 12, 2340. [Google Scholar] [CrossRef]
- Zaman, D.; Tiwari, M.; Gupta, A.; Sen, D. A review of leakage detection strategies for pressurised pipeline in steady-state. Eng. Fail. Anal. 2020, 109. [Google Scholar] [CrossRef]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Misiunas, D.; Lambert, M.; Simpson, A.; Olsson, G. Burst detection and location in water distribution networks. Water Sci. Technol. Water Supply 2005, 5, 71–80. [Google Scholar] [CrossRef]
- Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining, 1st ed.; Pearson Education India: Delhi, India, 2005. [Google Scholar]
- Wu, Y.; Liu, S. A review of data-driven approaches for burst detection in water distribution systems. Urban Water J. 2017, 14, 972–983. [Google Scholar] [CrossRef]
- Mounce, S.R.; Machell, J. Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water J. 2006, 3, 21–31. [Google Scholar] [CrossRef]
- Aksela, K.; Aksela, M.; Vahala, R. Leakage detection in a real distribution network using a SOM. Urban Water J. 2009, 6, 279–289. [Google Scholar] [CrossRef]
- Ye, G.; Fenner, R.A. Kalman filtering of hydraulic measurements for burst detection in water distribution systems. J. Pipeline Syst. Eng. Pract. 2011, 2, 14–22. [Google Scholar] [CrossRef]
- Akkaya, A.; Talu, M. Extended kalman filter based IMU sensor fusion application for leakage position detection in water pipelines. J. Fac. Eng. Archit. Gazi Univ. 2017, 32, 1393–1404. [Google Scholar]
- Mounce, S.R.; Mounce, R.B.; Boxall, J.B. Novelty detection for time series data analysis in water distribution systems using support vector machines. J. Hydroinform. 2011, 13, 672–686. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhao, M.; Qi, J.; Huang, Y.; Zhao, H. Leakage zone identification in large-scale water distribution systems using multiclass support vector machines. J. Water Resour. Plan. Manag. 2016, 142. [Google Scholar] [CrossRef]
- Arsene, C.; Gabrys, B.; Al-Dabass, D. Decision support system for water distribution systems based on neural networks and graphs theory for leakage detection. Expert Syst. Appl. 2012, 39, 13214–13224. [Google Scholar] [CrossRef]
- Fang, Q.; Zhang, J.; Xie, C.; Yang, Y. Detection of multiple leakage points in water distribution networks based on convolutional neural networks. Water Sci. Technol. Water Supply 2019, 19, 2231–2239. [Google Scholar] [CrossRef]
- Loureiro, D.; Amado, C.; Martins, A.; Vitorino, D.; Mamade, A.; Coelho, S.T. Water distribution systems flow monitoring and anomalous event detection: A practical approach. Urban Water J. 2016, 13, 242–252. [Google Scholar] [CrossRef]
- Jung, D.; Kang, D.; Liu, J.; Lansey, K. Improving the rapidity of responses to pipe burst in water distribution systems: A comparison of statistical process control methods. J. Hydroinform. 2015, 17, 307–328. [Google Scholar] [CrossRef]
- Chan, T.K.; Chin, C.S.; Zhong, X. Review of Current Technologies and Proposed Intelligent Methodologies for Water Distributed Network Leakage Detection. IEEE Access 2018, 6, 78846–78867. [Google Scholar] [CrossRef]
- Romano, M.; Kapelan, Z.; Savić, D.A. Automated Detection of Pipe Bursts and Other Events in Water Distribution Systems. J. Water Resour. Plan. Manag. 2014, 140, 457–467. [Google Scholar] [CrossRef]
- Kang, J.; Park, Y.J.; Lee, J.; Wang, S.H.; Eom, D.S. Novel Leakage Detection by Ensemble CNN-SVM and Graph-Based Localization in Water Distribution Systems. IEEE Trans. Ind. Electron. 2018, 65, 4279–4289. [Google Scholar] [CrossRef]
- Bakker, M.; Trietsch, E.A.; Vreeburg, J.H.G.; Rietveld, L.C. Analysis of historic bursts and burst detection in water supply areas of different size. Water Supply 2014, 14, 1035–1044. [Google Scholar] [CrossRef]
- Eliades, D.G.; Polycarpou, M.M. Leakage fault detection in district metered areas of water distribution systems. J. Hydroinform. 2012, 14, 992–1005. [Google Scholar] [CrossRef]
- Jung, D.; Lansey, K. Water Distribution System Burst Detection Using a Nonlinear Kalman Filter. J. Water Resour. Plan. Manag. 2015, 141, 04014070. [Google Scholar] [CrossRef]
- Gargano, R.; Pianese, D. Influence of hydraulic and mechanical reliability on the overall reliability of water networks. In Proceedings of the 26th Convegno di Idraulica e Costruzioni Idrauliche, Catania, Italy, 9–12 September 1998. [Google Scholar]
- Paez, D.; Filion, Y. Water Distribution Systems Reliability under Extended-Period Simulations. J. Water Resour. Plan. Manag. 2020, 146, 04020062. [Google Scholar] [CrossRef]
- Gargano, R.; Tricarico, C.; del Giudice, G.; Granata, F. A stochastic model for daily residential water demand. Water Supply 2016, 16, 1753–1767. [Google Scholar] [CrossRef]
- Gargano, R.; Tricarico, C.; Granata, F.; Santopietro, S.; de Marinis, G. Probabilistic models for the peak residential water demand. Water 2017, 9, 417. [Google Scholar] [CrossRef]
- Giustolisi, O.; Todini, E. On the approximation of distributed demands as nodal demands in WDN analysis. In Proceedings of the XXXI National Hydraulics and Hydraulic Construction Conference, Perugia, Italy, 9–12 September 2008; pp. 9–12. [Google Scholar]
- Menapace, A.; Avesani, D.; Righetti, M.; Bellin, A.; Pisaturo, G. Uniformly Distributed Demand EPANET Extension. Water Resour. Manag. 2018, 32, 2165–2180. [Google Scholar] [CrossRef]
- Siew, C.; Tanyimboh, T.T. Pressure-Dependent EPANET Extension. Water Resour. Manag. 2012, 26, 1477–1498. [Google Scholar] [CrossRef]
- Menapace, A.; Avesani, D. Global Gradient Algorithm extension to distributed pressure driven pipe demand model. Water Resour. Manag. 2019, 33, 1717–1736. [Google Scholar] [CrossRef]
- Todini, E.; Pilati, S. A gradient method for the solution of looped pipe networks. Comput. Appl. Water Supply 1988, 1, 1–20. [Google Scholar]
- Menapace, A.; Righetti, M.; Avesani, D. Application of distributed pressure driven modeling in water supply system. In Proceedings of the 1st International WDSA/CCWI Joint Conference, Kingston, ON, Canada, 23–25 July 2018; pp. 1–8. [Google Scholar]
- Zanfei, A.; Menapace, A.; Santopietro, S.; Righetti, M. Calibration Procedure for Water Distribution Systems: Comparison among Hydraulic Models. Water 2020, 12, 1421. [Google Scholar] [CrossRef]
- Cassa, A.M.; van Zyl, J.E.; Laubscher, R.F. A numerical investigation into the effect of pressure on holes and cracks in water supply pipes. Urban Water J. 2010, 7, 109–120. [Google Scholar] [CrossRef]
- Cassa, A.M.; van Zyl, J.E. Predicting the head-leakage slope of cracks in pipes subject to elastic deformations. J. Water Supply Res. Technol. Aqua 2013, 62, 214–223. [Google Scholar] [CrossRef]
- Cassa, A.; van Zyl, J. Predicting the Leakage Exponents of Elastically Deforming Cracks in Pipes. Procedia Eng. 2014, 70, 302–310. [Google Scholar] [CrossRef]
- van Zyl, J.E.; Cassa, A.M. Modeling Elastically Deforming Leaks in Water Distribution Pipes. J. Hydraul. Eng. 2014, 140, 182–189. [Google Scholar] [CrossRef]
- Su, Y.C.; Mays, L.W.; Duan, N.; Lansey, K.E. Reliability-based optimization model for water distribution systems. J. Hydraul. Eng. 1987, 113, 1539–1556. [Google Scholar] [CrossRef]
- Walski, T.M.; Pelliccia, A. Economic analysis of water main breaks. J. Am. Water Work. Assoc. 1982, 74, 140–147. [Google Scholar] [CrossRef]
- Mazzolani, G.; Berardi, L.; Laucelli, D.; Simone, A.; Martino, R.; Giustolisi, O. Estimating leakages in water distribution networks based only on inlet flow data. J. Water Resour. Plan. Manag. 2017, 143, 04017014. [Google Scholar] [CrossRef]
- Di Nardo, A.; Di Natale, M.; Gargano, R.; Giudicianni, C.; Greco, R.; Santonastaso, G.F. Performance of partitioned water distribution networks under spatial-temporal variability of water demand. Environ. Model. Softw. 2018, 101, 128–136. [Google Scholar] [CrossRef]
- Zanfei, A.; Menapace, A.; Pisaturo, G.R.; Righetti, M. Calibration of Water Leakages and Valve Setting in a Real Water Supply System. In Environmental Sciences Proceedings; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020; Volume 2, p. 41. [Google Scholar]
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207. [Google Scholar] [CrossRef]
- Lambert, A. What do we know about pressure-leakage relationships in distribution systems. In Proceedings of the IWA Systems Approach to Leakage Control and Water Distribution System Management, Brno, Czech Republic, 16–18 May 2001. [Google Scholar]
Hour | March Request | March Consumption | April Request | April Consumption |
---|---|---|---|---|
0:00 | 0.538 | 0.007 | 0.016 | 0.177 |
1:00 | 0.093 | 3.42 × 10 | 0.019 | 0.172 |
2:00 | 0.038 | 4.20 × 10 | 4.9 × 10 | 0.078 |
3:00 | 0.269 | 0.033 | 0.001 | 0.188 |
4:00 | 0.197 | 0.002 | 6.0 × 10 | 0.050 |
5:00 | 0.099 | 0.032 | 3.1 × 10 | 0.010 |
6:00 | 0.813 | 0.634 | 0.156 | 0.208 |
7:00 | 0.626 | 0.290 | 0.063 | 0.635 |
8:00 | 0.688 | 0.043 | 0.763 | 0.959 |
9:00 | 0.793 | 0.055 | 0.740 | 0.766 |
10:00 | 0.665 | 0.238 | 0.646 | 0.995 |
11:00 | 0.771 | 0.033 | 0.001 | 0.201 |
12:00 | 0.175 | 0.012 | 1.9 × 10 | 0.096 |
13:00 | 0.757 | 0.044 | 0.311 | 0.906 |
14:00 | 0.940 | 0.165 | 0.970 | 0.755 |
15:00 | 0.909 | 0.254 | 0.059 | 0.433 |
16:00 | 0.990 | 0.181 | 0.172 | 0.466 |
17:00 | 0.181 | 0.005 | 0.002 | 0.031 |
18:00 | 0.113 | 0.015 | 3.0 × 10 | 0.028 |
19:00 | 0.181 | 0.116 | 0.134 | 0.821 |
20:00 | 0.309 | 0.846 | 0.076 | 0.041 |
21:00 | 0.477 | 0.972 | 0.005 | 0.052 |
22:00 | 0.759 | 0.111 | 5.3 × 10 | 1.52 × 10 |
23:00 | 0.353 | 1.11 × 10 | 2.9 × 10 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menapace, A.; Zanfei, A.; Felicetti, M.; Avesani, D.; Righetti, M.; Gargano, R. Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Appl. Sci. 2020, 10, 8219. https://doi.org/10.3390/app10228219
Menapace A, Zanfei A, Felicetti M, Avesani D, Righetti M, Gargano R. Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Applied Sciences. 2020; 10(22):8219. https://doi.org/10.3390/app10228219
Chicago/Turabian StyleMenapace, Andrea, Ariele Zanfei, Manuel Felicetti, Diego Avesani, Maurizio Righetti, and Rudy Gargano. 2020. "Burst Detection in Water Distribution Systems: The Issue of Dataset Collection" Applied Sciences 10, no. 22: 8219. https://doi.org/10.3390/app10228219
APA StyleMenapace, A., Zanfei, A., Felicetti, M., Avesani, D., Righetti, M., & Gargano, R. (2020). Burst Detection in Water Distribution Systems: The Issue of Dataset Collection. Applied Sciences, 10(22), 8219. https://doi.org/10.3390/app10228219