Improvement of Microwave Electric Field Measurement Sensitivity via Multi-Carrier Modulation in Rydberg Atoms
Abstract
:1. Introduction
2. Experiment Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ramos, R.; Spierings, D.; Racicot, I.; Steinberg, A.M. Measurement of the time spent by a tunnelling atom within the barrier region. Nature 2020, 583, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.P.; Wu, C.H.; Wang, L.R.; Chen, G.; Jia, S.T. Observation of diffraction pattern in two-dimensional optically induced atomic lattice. Opt. Lett. 2019, 44, 4123. [Google Scholar] [CrossRef] [PubMed]
- Sedlacek, J.A.; Schwettmann, A.; Kubler, H.; Shaffer, J.P. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 2013, 111, 63001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, M.T.; Haddab, A.H.; Gordon, J.A.; Holloway, C.L. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave. Appl. Phys. Lett. 2019, 114, 114101. [Google Scholar] [CrossRef]
- Kinoshita, M.; Shimaoka, K.; Shimada, Y. Optimization of the atomic candle signal for the precise measurement of microwave power. IEEE T. Instrum. Meas. 2013, 62, 1807. [Google Scholar] [CrossRef]
- Holloway, C.L.; Simons, M.T.; Kautz, M.D.; Haddab, A.H.; Gordon, J.A.; Crowley, T.P. A quantum-based power standard: Using Rydberg atoms for a SI-traceable radiofrequency power measurement technique in rectangular waveguides. Appl. Phys. Lett. 2018, 113, 094101. [Google Scholar] [CrossRef]
- Yuan, J.P.; Dong, S.C.; Wu, C.H.; Wang, L.R.; Xiao, L.T.; Jia, S.T. Optically tunable grating in a V + Ξ configuration involving a Rydberg state. Opt. Express 2020, 28, 23820. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoglu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633–673. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Yuan, J.P.; Dong, S.C.; Wu, C.H.; Wang, L.R. Observation of an electromagnetically induced grating in cold 85Rb atoms. Appl. Sci. 2020, 10, 5740. [Google Scholar] [CrossRef]
- Holloway, C.L.; Gordon, J.A.; Jefferts, S.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Broadband Rydberg atom-based electric-field probe for SI-traceable, Self-calibrated measurements. IEEE T. Antenn. Propag. 2014, 62, 6169. [Google Scholar] [CrossRef] [Green Version]
- Downes, L.A.; MacKellar, A.R.; Whiting, D.J.; Bourgenot, C.; Adams, C.S.; Weatherill, K.J. Full-field terahertz imaging at kilohertz frame rates using atomic vapor. Phys. Rev. X 2020, 10, 011027. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Wilson, P.F.; Cooke, C.M.; Anderson, D.A.; Raithel, G. Atom-based RF electric field metrology: from self-calibrated measurements to subwavelength and near-field imaging. IEEE Trans. Electromagn. C 2017, 59, 717. [Google Scholar] [CrossRef]
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101. [Google Scholar] [CrossRef]
- Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Löw, R.; Pfau, T.; Shaffer, J.P. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 2012, 8, 819. [Google Scholar] [CrossRef]
- Fan, H.Q.; Kumar, S.; Daschner, R.; Kübler, H.; Shaffer, J.P. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. Opt. Lett. 2014, 39, 3030. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.T.; Gordon, J.A.; Holloway, C.L. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency. J. Appl. Phys. 2016, 120, 123103. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.A.; Paradis, E.G.; Raithel, G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator. Appl. Phys. Lett. 2018, 113, 073501. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.Q.; Kumar, S.; Kübler, H.; Shaffer, J.P. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 104004. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.T.; Gordon, J.A.; Holloway, C.L.; Anderson, D.A.; Miller, S.A.; Raithel, G. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler–Townes splitting in Rydberg atoms. Appl. Phys. Lett. 2016, 108, 174101. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Fan, H.Q.; Kübler, H.; Sheng, J.; Shaffer, J.P. Atom-based sensing of weak radio frequency electric fields using homodyne readout. Sci. Rep. 2017, 7, 42981. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.Q.; Kübler, H.; Jahangiri, A.J.; Shaffer, J.P. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express 2017, 25, 8625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, M.Y.; Hu, Y.; Ma, J.; Zhang, H.; Zhang, L.J.; Xiao, L.T.; Jia, S.T. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys. 2020, 16, 911. [Google Scholar] [CrossRef]
- Zou, H.Y.; Song, Z.F.; Mu, H.H.; Feng, Z.G.; Qu, J.F.; Wang, Q.L. Atomic receiver by utilizing multiple radio-frequency coupling at Rydberg states of rubidium. Appl. Sci. 2020, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Berman, P.R.; Malinovsky, V.S. Principles of Laser Spectroscopy and Quantum Optics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Hao, L.P.; Xue, Y.M.; Fan, J.B.; Jiao, Y.C.; Zhao, J.M.; Jia, S.T. Nonlinearity of microwave electric field coupled Rydberg electromagnetically induced transparency and Autler–Townes splitting. Appl. Sci. 2019, 9, 1720. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yuan, J.; Wang, L. Improvement of Microwave Electric Field Measurement Sensitivity via Multi-Carrier Modulation in Rydberg Atoms. Appl. Sci. 2020, 10, 8110. https://doi.org/10.3390/app10228110
Li S, Yuan J, Wang L. Improvement of Microwave Electric Field Measurement Sensitivity via Multi-Carrier Modulation in Rydberg Atoms. Applied Sciences. 2020; 10(22):8110. https://doi.org/10.3390/app10228110
Chicago/Turabian StyleLi, Shaohua, Jinpeng Yuan, and Lirong Wang. 2020. "Improvement of Microwave Electric Field Measurement Sensitivity via Multi-Carrier Modulation in Rydberg Atoms" Applied Sciences 10, no. 22: 8110. https://doi.org/10.3390/app10228110
APA StyleLi, S., Yuan, J., & Wang, L. (2020). Improvement of Microwave Electric Field Measurement Sensitivity via Multi-Carrier Modulation in Rydberg Atoms. Applied Sciences, 10(22), 8110. https://doi.org/10.3390/app10228110