Spatiotemporal Analysis of Land Use and Land Cover (LULC) Changes and Precipitation Trends in Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. LULC Data
2.2.2. Rain Gauge Data
2.3. Methods
2.3.1. Precipitation Trend Modeling
2.3.2. Gridded Precipitation Trends
2.3.3. Built-Up area Changes
3. Results
3.1. Spatiotemporal Changes in Precipitation Trends
3.2. Spatiotemporal Changes of Built-Up Areas
3.3. The Relationship between Precipitation Trends and Built-Up Changes
4. Discussion
4.1. The Spatiotemporal Changes of Temperature Trends
4.2. Analysis of the Possible Influence of Urbanization on Precipitation
5. Conclusions
- (1)
- Precipitation trends show different characteristics in the Ur, OUr and OS region during a period of rapid urbanization. Most Ur regions had an upward trend in terms of annual and extreme precipitation from 1979 to 2010. In comparison, the trends in annual precipitation were downward in most OUr and OS regions. Moreover, we found that the upward trends in extreme precipitation including extreme amount and frequency are distributed throughout the eastern region of the study area. From 1979 to 2010, the areas of most rapid expansion were in the OUr region. The grids with higher change rates of the built-up area are mainly distributed in the OUr region, e.g., within 25 km of the barycenter of the central area. The OS region, far away from the central area, has a relatively lower changing rate.
- (2)
- The rapid growth of the built-up area percentage in the OUr is positively correlated with the increase of precipitation. The larger the change of the built-up area percentage, the more pronounced the increase in precipitation over time. In contrast, although the Ur experienced relatively rapid growth of built-up area percentage, there is a negative correlation between precipitation and changes in the built-up area percentage.
- (3)
- The quantitative relationship between temperature and the change rates of the built-up indicates that the warming trends in the Ur and OUr region are distinct. The largest increase in the annual mean temperature was observed in the southwest of OUr, where the change rate of the built-up area percentage was highest, which is related to the growth of the built-up area.
- (4)
- The data from five rain stations located in coastal areas around Shanghai that have hardly experienced obvious urbanization processes were used for precipitation trend analysis of climate backgrounds. We found that the magnitude of precipitation increased significantly in the Shanghai urban areas, which suggests that urbanization has a profound impact on precipitation at the regional level.
Author Contributions
Funding
Conflicts of Interest
References
- Gremm, J.; Barth, J.; Fietkiewicz, K.J.; Stock, W.G. Informational Cities in the GCC States. In Transitioning Towards a Knowledge Society: Qatar as a Case Study; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–36. [Google Scholar]
- Abadie, L.M.; Galarraga, I.; Sainz de Murieta, E. Understanding risks in the light of uncertainty: Low-probability, high-impact coastal events in cities. Env. Res. Lett. 2017, 12, 014017. [Google Scholar] [CrossRef]
- IPCC. Integrated Risk and Uncertainty Assessment of Climate Change Response Policies. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report, Intergovernmental Panel on Climate, C.; Cambridge University Press: Cambridge, UK, 2015; pp. 151–206. [Google Scholar]
- Shen, M.X.; Chen, J.; Zhuan, M.J.; Chen, H.; Xu, C.Y.; Xiong, L.H. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol. 2018, 556, 10–24. [Google Scholar] [CrossRef]
- Kim, S.; Shin, Y.; Kim, H.; Pak, H.; Ha, J. Impacts of typhoon and heavy rain disasters on mortality and infectious diarrhea hospitalization in South Korea. Int. J. Environ. Health Res. 2012, 23, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yi, S.; Li, M.Y.; Wang, L.; Song, C.C. Effects of sea level rise, land subsidence, bathymetric change and typhoon tracks on storm flooding in the coastal areas of Shanghai. Sci. Total. Env. 2017, 621, 228–234. [Google Scholar] [CrossRef]
- Löwe, R.; Urich, C.; Sto Domingo, N.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of Urban Pluvial Flood Risk and Efficiency of Adaptation Options Through Simulations-A New Generation of Urban Planning Tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Dosio, A.; Graversen, R.; Sillmann, J.; Carrao, H.; Dunbar, M.; Singleton, A.; Montagna, P.; Barbosa, P.; Vogt, J. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res.-Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Binita, K.; Shepherd, J.M.; Johnson, G.C. Climate change vulnerability assessment in Georgia. Appl. Geogr. 2015, 62, 62–74. [Google Scholar]
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plann. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Fan, F.L.; Weng, Q.H.; Wang, Y.P. Land Use and Land Cover Change in Guangzhou, China, from 1998 to 2003, Based on Landsat TM /ETM+ Imagery. Sensors 2007, 7, 1323–1342. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, R.; Lin, Q.L. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos Env. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Seino, N.; Aoyagi, T.; Tsuguti, H. Numerical simulation of urban impact on precipitation in Tokyo: How does urban temperature rise affect precipitation? Urban. Clim. 2018, 23, 8–35. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. PLoS ONE 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusaka, H.; Nawata, K.; Suzuki-Parker, A.; Takane, Y.; Furuhashi, N. Mechanism of Precipitation Increase with Urbanization in Tokyo as Revealed by Ensemble Climate Simulations. J. Appl. Meteorol. Clim. 2014, 53, 824–839. [Google Scholar] [CrossRef]
- Sharma, R.; Joshi, P.K. Mapping environmental impacts of rapid urbanization in the National Capital Region of India using remote sensing inputs. Urban. Clim. 2016, 15, 70–82. [Google Scholar] [CrossRef]
- Bae, S.Y.; Jeong, J.I.; Park, R.J.; Lim, K.S.S.; Hong, S.Y. Weekly variability of precipitation induced by anthropogenic aerosols: A case study in Korea in summer 2004. Sci. Total. Env. 2016, 541, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Tao, W.K.; Jung, C.-H. Aerosol Effects on Instability, Circulations, Clouds, and Precipitation. Adv. Meteorol. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.X.; Guo, C.X.; Hu, J.; Dong, l. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE 2014, 9, e102124. [Google Scholar] [CrossRef]
- Souma, K.; Sunada, K.; Suetsugi, T.; Tanaka, K. Use of ensemble simulations to evaluate the urban effect on a localized heavy rainfall event in Tokyo, Japan. J. Hydro-Environ. Res. 2013, 7, 228–235. [Google Scholar] [CrossRef]
- Smith, C.; Lindley, S.; Levermore, G. Estimating spatial and temporal patterns of urban anthropogenic heat fluxes for UK cities: The case of Manchester. Appl. Clim. 2009, 98, 19–35. [Google Scholar] [CrossRef]
- Zhong, S.; Qian, Y.; Zhao, C.; Leung, L.; Yang, X.Q. A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area: Urban Heat Island Versus Aerosol Effects. J. Geophys. Res.-Atmos. 2015, 120, 10903–10914. [Google Scholar] [CrossRef]
- Zhu, K.G.; Xie, M.; Wang, T.J.; Cai, J.X.; Li, S.B.; Feng, W. A modeling study on the effect of urban land surface forcing to regional meteorology and air quality over South China. Atmos. Environ. 2017, 152, 389–404. [Google Scholar] [CrossRef]
- Jin, M.L.; Marshall Shepherd, J.; King, M.D. Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston. J. Geophys. Res.-Atmos. 2005, 110, D10S20. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Z.L.; Xu, Y.Y.; Fu, Q. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols. Geophys. Res. Lett. 2016, 43, 9860–9868. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.C.; Qian, Y. Simulation of urban climate with high-resolution WRF model: A case study in Nanjing, China. Asia-Pac. J. Atmos. Sci. 2012, 48, 227–241. [Google Scholar] [CrossRef]
- Pathirana, A.; Denekew, H.B.; Veerbeek, W.; Zevenbergen, C.; Banda, A.T. Impact of urban growth-driven landuse change on microclimate and extreme precipitation-A sensitivity study. Atmos. Res. 2014, 138, 59–72. [Google Scholar] [CrossRef]
- Holst, C.C.; Tam, C.-Y.; Chan, J.C.L. Sensitivity of urban rainfall to anthropogenic heat flux: A numerical experiment. Geophys. Res. Lett. 2016, 43, 2240–2248. [Google Scholar] [CrossRef] [Green Version]
- Souma, K.; Tanaka, K.; Suetsugi, T.; Sunada, K.; Tsuboki, K.; Shinoda, T.; Wang, Y.Q.; Sakakibara, A.; Hasegawa, K.; Moteki, Q.; et al. A comparison between the effects of artificial land cover and anthropogenic heat on a localized heavy rain event in 2008 in Zoshigaya, Tokyo, Japan. J. Geophys. Res.-Atmos. 2013, 118, 11600–11610. [Google Scholar] [CrossRef]
- Solecki, W.D.; Oliveri, C. Downscaling climate change scenarios in an urban land use change model. J. Env. Manag. 2004, 72, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Shem, W.; Shepherd, M. On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res. 2009, 92, 172–189. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Alvalá, R.C.S.; Kubota, P.Y.; Vieira, R.M.S.P. Impacts of land use and land cover changes on the climate over Northeast Brazil. Atmos. Sci. Lett. 2015, 16, 219–227. [Google Scholar] [CrossRef]
- Bhati, S.; Mohan, M. WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions. Appl. Clim. 2016, 126, 385–400. [Google Scholar] [CrossRef]
- Vahmani, P.; Ban-Weiss, G.A. Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: A case study of the urban heat island in Los Angeles. J. Geophys. Res.-Atmos. 2016, 121, 1511–1531. [Google Scholar] [CrossRef]
- Salathé, E.; Leung, L.; Qian, Y.; Zhang, Y.X. Regional Climate Models Regional Climate Model Projections for the State of Washington. Clim. Chang. 2010, 102, 51–75. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.F.; Smith, R.L.; Bala, G.; Duffy, P. The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim. Dynam. 2010, 34, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Dominguez, F.; Lettenmaier, D.P. Urban precipitation extremes: How reliable are regional climate models? Geophys. Res. Lett. 2012, 39, 419–420. [Google Scholar] [CrossRef] [Green Version]
- Bolgiani, P.; Fernández-González, S.; Valero, F.; Merino, A.; García-Ortega, E.; Sánchez, J.L.; Martín, M.L. Numerical Simulation of a Heavy Precipitation Event in the Vicinity of Madrid-Barajas International Airport: Sensitivity to Initial Conditions, Domain Resolution, and Microphysics Parameterizations. Atmosphere 2018, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Sertel, E.; Robock, A.; Ormeci, C. Impacts of land cover data quality on regional climate simulations. Int. J. Clim. 2010, 30, 1942–1953. [Google Scholar] [CrossRef]
- Xie, Y.H.; Shi, J.C.; Lei, Y.H.; Xing, J.Y.; Yang, A.Q. Impacts of land cover change on simulating precipitation in Beijing area of China. Int. Geosci. Remote Sens. Symp. (Igarss) 2014, 4145–4148. [Google Scholar] [CrossRef]
- Zhang, K.H.L.; Song, S.F. Rural–urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Zhao, D.M.; Wu, J. Regional warming induced by urban surface expansion in Shanghai. Atmos. Ocean. Sci. Lett. 2018. 11, 228–235. [CrossRef] [Green Version]
- Wang, Y.L.; Feng, J.M.; Gao, H. Numerical simulation of the impact of land cover change on regional climate in China. Appl. Clim. 2013, 115, 141–152. [Google Scholar] [CrossRef]
- Zhao, D.M.; Wu, J. Changes in urban-related precipitation in the summer over three city clusters in China. Appl. Clim. 2018, 134, 83–93. [Google Scholar] [CrossRef]
- Hu, Y.H.; Jia, G.S. Influence of land use change on urban heat island derived from multi-sensor data. Int. J. Clim. 2010, 30, 1382–1395. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.G.; Li, Z.; Liu, C.M.; Liu, X.J. Investigation into the daily precipitation variability in the Yangtze River Delta, China. Hydrol. Process. 2013, 27, 175–185. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.B.; Du, Y.D.; Mao, C.Y.; Zhang, L. Urbanization effect on precipitation over the Pearl River Delta based on CMORPH data. Adv. Clim. Chang. Res. 2015, 6, 16–22. [Google Scholar] [CrossRef]
- Wang, D.G.; Jiang, P.; Wang, G.L.; Wang, D.S. Urban extent enhances extreme precipitation over the Pearl River Delta, China. Atmos. Sci. Lett. 2015, 16, 310–317. [Google Scholar] [CrossRef]
- Su, Y.X.; Chen, X.Z.; Wang, C.Y.; Zhang, H.O.; Liao, J.S.; Ye, Y.Y.; Wang, C.J. A new method for extracting built-up urban areas using DMSP-OLS nighttime stable lights: A case study in the Pearl River Delta, southern China. Gisci. Remote Sens. 2015, 52, 218–238. [Google Scholar] [CrossRef]
- Li, W.Y.; He, X.G.; Scaioni, M.; Yao, D.J.; Mi, C.R.; Zhao, J.; Chen, Y.; Zhang, K.H.; Gao, J.; Li, X. Annual precipitation and daily extreme precipitation distribution: Possible trends from 1960 to 2010 in urban areas of China. Geomat. Nat. Haz. Risk 2019, 10, 1694–1711. [Google Scholar] [CrossRef]
- Song, X.M.; Zhang, J.Y.; Aghakouchak, A.; Shouraseni, S.R.; Xuan, Y.Q.; Wang, G.Q.; He, R.M.; Wang, X.J.; Liu, C.S. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. J. Geophys. Res.-Atmos. 2014, 119, 11250–11271. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.H.; Liu, B.J.; Chen, G. Effects of Urbanization on Precipitation Characteristics. J. Nat. Resour. (Chin.) 2017, 32, 1591–1601. [Google Scholar]
- Liang, P.; Ding, Y.H.; He, J.M.; Tang, X. Study of relationship between urbanization speed and change of spatial distribution of rainfall over Shanghai. J. Trop. Meteorol. (Chin.) 2011, 27, 475–483. [Google Scholar]
- Liang, P.; Ding, Y.H. The Long-term Variation of Extreme Heavy Precipitation and Its Link to Urbanization Effects in Shanghai during 1916–2014. Adv. Atmos. Sci. 2017, 34, 321–334. [Google Scholar] [CrossRef]
- Shanghai Statistical YearBook 2019. Shanghai Municipal Statistics Bureau. Available online: http://tjj.sh.gov.cn/ (accessed on 1 August 2020).
- Du, S.Q.; Gu, H.H.; Wen, J.H.; Chen, K.; Van Rompaey, A. Detecting Flood Variations in Shanghai over 1949–2009 with Mann-Kendall Tests and a Newspaper-Based Database. Water 2015, 7, 1808–1824. [Google Scholar] [CrossRef] [Green Version]
- Meng, F.; Kang, J.; Li, W.; Wu, T.; Wang, T.; An, Y. Analysis and evaluation of typhoon disasters in Shanghai in past 50 years. J. Catastrophology (Chin.) 2007, 22, 71–76. [Google Scholar]
- Yin, J.; Yin, Z.E.; Zhong, H.D.; Xu, S.Y.; Hu, X.M.; Wang, J.; Wu, J.P. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979–2009) in China. Env. Monit Assess. 2011, 177, 609–621. [Google Scholar] [CrossRef]
- Wilcox, R.R. A note on the Theil-Sen regression estimator when the regressor is random and the error term is heteroscedastic. Biom. J. 1998, 40, 261–268. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Ma, S.M.; Zhou, T.J.; Dai, A.G.; Han, Z.Y. Observed Changes in the Distributions of Daily Precipitation Frequency and Amount over China from 1960 to 2013. J. Clim. 2015, 28, 6960–6978. [Google Scholar] [CrossRef]
- Pfeifer, S.; Bülow, K.; Gobiet, A.; Hänsler, A.; Mudelsee, M.; Otto, J.; Rechid, D.; Teichmann, C.; Jacob, D. Robustness of Ensemble Climate Projections Analyzed with Climate Signal Maps: Seasonal and Extreme Precipitation for Germany. Atmosphere 2015, 6, 677–698. [Google Scholar] [CrossRef] [Green Version]
- Sonesson, C. Evaluations of some Exponentially Weighted Moving Average methods. J. Appl. Stat. 2003, 30, 1115–1133. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Li, X.; Mitra, C.; Dong, L.; Yang, Q.C. Understanding land use change impacts on microclimate using Weather Research and Forecasting (WRF) model. Phys. Chem. Earth 2018, 103, 115–126. [Google Scholar] [CrossRef]
- Kamal, S.; Huang, H.P.; Myint, S.W. The Influence of Urbanization on the Climate of the Las Vegas Metropolitan Area: A Numerical Study. J. Appl. Meteorol. Clim. 2015, 54, 2157–2177. [Google Scholar] [CrossRef]
- de Souza, D.O.; dos Santos Alvala, R.C.; do Nascimento, M.G. Urbanization effects on the microclimate of Manaus: A modeling study. Atmos. Res. 2016, 167, 237–248. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D.; Seto, D. The long-term effect of increasing the albedo of urban areas. Env. Res. Lett. 2012, 7, 024004. [Google Scholar] [CrossRef]
- Trlica, A.; Hutyra, L.R.; Schaaf, C.L.; Erb, A.; Wang, J.A. Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape. Earth’s Future 2017, 5, 1084–1101. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Ng, E. Building Porosity for Better Urban Ventilation in High-Density Cities-A computational parametric study. Build. Env. 2012, 50, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Klipp, C. Wind Direction Dependence of Atmospheric Boundary Layer Turbulence Parameters in the Urban Roughness Sublayer. J. Appl. Meteorol. Clim. 2007, 46, 2086–2097. [Google Scholar] [CrossRef] [Green Version]
- Crago, R.D.; Okello, W.; Jasinski, M.F. Equations for the Drag Force and Aerodynamic Roughness Length of Urban Areas with Random Building Heights. Bound.-Lay Meteorol. 2012, 145, 423–437. [Google Scholar] [CrossRef]
- Liu, G.; Sun, J.N.; Jiang, W.M. Observational verification of urban surface roughness parameters derived from morphological models. Meteorol. Appl. 2009, 16, 205–213. [Google Scholar] [CrossRef]
- Padmakumari, B.; Jaswal, A.K.; Goswami, B.N. Decrease in evaporation over the Indian monsoon region: Implication on regional hydrological cycle. Clim. Chang. 2013, 121, 787–799. [Google Scholar] [CrossRef]
- Guo, X.L.; Fu, D.H.; Wang, J. Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res. 2006, 82, 112–126. [Google Scholar] [CrossRef]
- Pozo, D.; Marín, J.C.; Raga, G.B.; Baumgardner, D. Aerosol particles in the Mexican East Pacific. Part II: Numerical simulations of the impact of enhanced CCN on precipitation development. Atmosfera 2013, 26, 221–241. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Yamaguchi, Y. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sens. Env. 2005, 99, 44–54. [Google Scholar] [CrossRef]
- Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Clim. 2011, 31, 189–199. [Google Scholar] [CrossRef]
- Allen, L.; Lindberg, F.; Grimmond, C.S.B. Global to city scale urban anthropogenic heat flux: Model and variability. Int. J. Clim. 2011, 31, 1990–2005. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science-An Introductory Survey, 2nd ed.; Academic Press: Cambridge, MA, USA, 2006; pp. 375–412. [Google Scholar]
- Wong, P.; Lai, P.C.; Hart, M. Temporal statistical analysis of urban heat islands at the microclimate level. Procedia Env. Sci. 2015, 26, 91–94. [Google Scholar]
- González-Aparicio, I.; Baklanov, A.; Hidalgo, J.; Korsholm, U.; Mahura, A. Impact of city expansion and increased heat fluxes scenarios on the urban boundary layer of Bilbao using Enviro-HIRLAM. Urban. Clim. 2014, 10, 831–845. [Google Scholar] [CrossRef]
- Sharma, A.; Fernando, H.J.S.; Hamlet, A.F.; Hellmann, J.J.; Barlage, M.; Chen, F. Urban meteorological modeling using WRF: A sensitivity study. Int. J. Clim. 2017, 37, 1885–1900. [Google Scholar] [CrossRef]
- Ganeshan, M.; Murtugudde, R.; Imhoff, M.L. A multi-city analysis of the UHI-influence on warm season rainfall. Urban. Clim. 2013, 6, 1–23. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Seto, K.C.; Schneider, A.; Liu, Z.T.; Zhou, L.M.; Wang, W.L. Climate Response to Rapid Urban Growth: Evidence of a Human-Induced Precipitation Deficit. J. Clim. 2007, 20, 2299–2306. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Sugiyama, M.; Shiogama, H.; Emori, S. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. PNAS 2009, 107, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, W.G.; He, B.; Chen, Z.; Jia, K. Change in Intensity and Frequency of Extreme Precipitation and its Possible Teleconnection With Large-Scale Climate Index Over the China From 1960 to 2015. J. Geophys. Res.-Atmos. 2018, 123, 1–14. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Schaffitel, A.; Bayer, P. Long-Term Evolution of Anthropogenic Heat Fluxes into a Subsurface Urban Heat Island. Env. Sci. Technol. 2013, 47, 9747–9755. [Google Scholar] [CrossRef]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Simpson, M.; Raman, S.; Suresh, R.; Mohanty, U.C. Urban effects of Chennai on sea breeze induced convection and precipitation. J. Earth Syst. Sci. 2008, 117, 897–909. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Meng, Z.Y.; Zhang, F.Q.; Markowski, P.M. The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island. Atmos. Chem. Phys. 2017, 17, 13213–13232. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.D.; Lynn, B.H.; Boone, A.; Tao, W.K.; Simpson, J. The Influence of Soil Moisture, Coastline Curvature, and Land-Breeze Circulations on Sea-Breeze-Initiated Precipitation. J. Hydrometeorol. 2001, 2, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.R.; Chan, J.C.L.; Wang, S.-Y. A planetary-scale land-sea breeze circulation in East Asia and the western North Pacific. Q. J. R. Meteorol. Soc. 2010, 136, 1543–1553. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Chow, K.C.; Yao, T.; Lau, A.K.H.; Fung, J.C.H. Effects of urbanization on the land sea breeze circulation over the Pearl River Delta region in winter. Int. J. Clim. 2010, 30, 1089–1104. [Google Scholar] [CrossRef] [Green Version]
- Lei, M.; Niyogi, D.; Kishtawal, C.; Sr-Pielke, R.A.; Beltrán-Przekurat, A.; Nobis, T.E.; Vaidya, S.S. Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India. Atmos. Chem. Phys. 2008, 8, 5975–5995. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Wang, Z.Y.; Sun, Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon Part I: Observed evidences. Int. J. Clim. 2008, 28, 1139–1161. [Google Scholar] [CrossRef]
- Lu, D.R.; Yang, Y.J.; Fu, Y.F. Interannual variability of summer monsoon convective and stratiform precipitations in East Asia during 1998–2013. Int. J. Clim. 2016, 36, 3507–3520. [Google Scholar] [CrossRef]
- Hu, Y.J.; Zhong, Z.; Liu, X.Y.; Zhu, Y.M. Influence of air–sea interaction on the simulation of East Asian summer monsoon: A case study. Dynam. Atmos. Ocean. 2012, 53–54, 1–16. [Google Scholar] [CrossRef]
- Chen, H.P.; Sun, J.Q. Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteorol. Atmos. Phys. 2013, 121, 55–77. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, S.; He, J.; Li, J.; Liang, J. Interdecadal variations of East Asian summer monsoon northward propagation and influences on summer precipitation over East China. Meteorol. Atmos. Phys. 2008, 100, 101–119. [Google Scholar] [CrossRef]
- Ding, A.J.; Wang, T.; Zhao, M.; Wang, T.J.; Li, Z.K. Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the Pearl River Delta of China. Atmos Env. 2004, 38, 6737–6750. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Sun, X.G.; Yang, X.-Q. Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals. J. Clim. 2018, 31, 5485–5505. [Google Scholar] [CrossRef]
- Ma, H.Y.; Jiang, Z.H.; Jie, S.; Dai, A.G.; Fei, H. Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model. Clim. Dynam. 2015, 46, 2977–2989. [Google Scholar] [CrossRef]
- Wu, J.; Zha, J.l.; Zhao, D.M. Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011. Clim. Dynam. 2016, 46, 847–863. [Google Scholar] [CrossRef]
- Chen, J.P.; Wen, Z.P.; Wu, R.G.; Chen, Z.S.; Zhao, P. Interdecadal changes in the relationship between Southern China winter-spring precipitation and ENSO. Clim. Dynam. 2014, 43, 1327–1338. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H.J.; Zhou, T.J. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos. Res. 2017, 197, 379–389. [Google Scholar] [CrossRef]
- Liu, C.L.; Zhang, Q.; Xu, Y.P.; Jiang, T. Impacts of ENSO Events on Climate Changes during Last 50 Years in the Yangtze Delta. Meteorological (Chin.) 2005, 31, 12–16. [Google Scholar]
- Agilan, V.; Umamahesh, N.V. Detection and attribution of non-stationarity in intensity and frequency of daily and 4-h extreme rainfall of Hyderabad, India. J. Hydrol. 2015, 530, 677–697. [Google Scholar] [CrossRef]
Data Type | Period | Temporal Resolution | Spatial Scale | Purpose | Source |
---|---|---|---|---|---|
LULC data | 1979, 1990, 2000, 2010 | Yearly | Areas | Built-up area detection | United States Geological Survey (USGS) |
Daily precipitation data | 1979–2010 | Daily | Point | Precipitation trend analysis | Shanghai Meteorological Bureau (SMB) |
Period | Date | Sensors |
---|---|---|
1979 | 4 August | Landsat Multispectral Scanner (MSS) |
1990 | 4 December | Landsat-5 Thematic Mapper (TM) |
2000 | 29 June | Landsat-7 Enhanced TM (ETM+) |
2010 | 22 May | Landsat-7 Enhanced TM (ETM+) |
Categories | Types of Land Use | LULC Descriptions |
---|---|---|
Built-up area | / | Urban land, settlements, other construction land (industrial land, transportation land, airport, special land, etc.) |
Non-built-up area | Farmland | Crop fields, vegetable field, fallow and alternate land, etc.) |
Green land | Land used for growing forest, arbors, shrubs, bamboos, coastal mangroves, etc. | |
Bare land | Land to be built on, unused land, rock, beaches, etc. | |
Waters | Rivers, lakes, reservoirs, ponds, mud flat, etc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; He, X.; Wang, J.; Wen, J.; Mu, H.; Xu, M. Spatiotemporal Analysis of Land Use and Land Cover (LULC) Changes and Precipitation Trends in Shanghai. Appl. Sci. 2020, 10, 7897. https://doi.org/10.3390/app10217897
Jiang Q, He X, Wang J, Wen J, Mu H, Xu M. Spatiotemporal Analysis of Land Use and Land Cover (LULC) Changes and Precipitation Trends in Shanghai. Applied Sciences. 2020; 10(21):7897. https://doi.org/10.3390/app10217897
Chicago/Turabian StyleJiang, Qin, Xiaogang He, Jun Wang, Jiahong Wen, Haizhen Mu, and Ming Xu. 2020. "Spatiotemporal Analysis of Land Use and Land Cover (LULC) Changes and Precipitation Trends in Shanghai" Applied Sciences 10, no. 21: 7897. https://doi.org/10.3390/app10217897
APA StyleJiang, Q., He, X., Wang, J., Wen, J., Mu, H., & Xu, M. (2020). Spatiotemporal Analysis of Land Use and Land Cover (LULC) Changes and Precipitation Trends in Shanghai. Applied Sciences, 10(21), 7897. https://doi.org/10.3390/app10217897