#
Response of a Cold-Electron Bolometer on THz Radiation from a Long YBa_{2}Cu_{3}O_{7−δ} Bicrystal Josephson Junction

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Setup

## 3. Experimental Results

## 4. Theory

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Zmuidzinas, J.; Richards, P.L. Superconducting detectors and mixers for millimeter and submillimeter astrophysics. Proc. IEEE
**2004**, 92, 1597. [Google Scholar] [CrossRef][Green Version] - Cukierman, A.; Lee, A.T.; Raum, C.; Suzuki, A.; Westbrook, B. Hierarchical sinuous-antenna phased array for millimeter wavelengths. Appl. Phys. Lett.
**2018**, 112, 132601. [Google Scholar] [CrossRef][Green Version] - Kuzmin, L.S.; Pankratov, A.L.; Gordeeva, A.V.; Zbrozhek, V.O.; Shamporov, V.A.; Revin, L.S.; Blagodatkin, A.V.; Masi, S.; de Bernardis, P. Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for high-performance cosmology missions. Commun. Phys.
**2019**, 2, 104. [Google Scholar] [CrossRef][Green Version] - Kuzmin, L.S. An array of cold-electron bolometers with SIN tunnel junctions and JFET readout for cosmology instruments. J. Phys. Conf. Ser.
**2008**, 97, 012310. [Google Scholar] [CrossRef][Green Version] - Salatino, M.; de Bernardis, P.; Kuzmin, L.S.; Mahashabde, S.; Masi, S. Sensitivity to Cosmic Rays of Cold Electron Bolometers for Space Applications. J. Low Temp. Phys.
**2014**, 176, 323. [Google Scholar] [CrossRef][Green Version] - Kuzmin, L.S. A Resonant Cold-Electron Bolometer With a Kinetic Inductance Nanofilter. IEEE Trans. Terahertz Sci. Technol.
**2014**, 4, 314. [Google Scholar] [CrossRef] - Kuzmin, L.S.; Mukhin, A.S.; Chiginev, A.V. Realization of the Resonant Cold-Electron Bolometer With a Kinetic Inductance Nanofilter for Multichroic Pixels. IEEE Trans. Appl. Supercond.
**2018**, 28, 2400304. [Google Scholar] [CrossRef] - Mukhin, A.S.; Kuzmin, L.S.; Chiginev, A.V.; Blagodatkin, A.V.; Zbrozhek, V.O.; Gordeeva, A.V.; Pankratov, A.L. Multifrequency seashell antenna based on resonant cold-electron bolometers with kinetic inductance nanofilters for CMB measurements. AIP Adv.
**2019**, 9, 015321. [Google Scholar] [CrossRef][Green Version] - Kuzmin, L.S.; Blagodatkin, A.V.; Mukhin, A.S.; Pimanov, D.A.; Zbrozhek, V.O.; Gordeeva, A.V.; Pankratov, A.L.; Chiginev, A.V. Multichroic seashell antenna with internal filters by resonant slots and cold-electron bolometers. Supercond. Sci. Technol.
**2019**, 32, 035009. [Google Scholar] [CrossRef] - Revin, L.S.; Pimanov, D.A.; Blagodatkin, A.V.; Gordeeva, A.V.; Zbrozhek, V.O.; Masterov, D.V.; Parafin, A.E.; Pavlov, S.A.; Pankratov, A.L.; Rakut, I.V. A Study of a Narrow-Band Receiving System of Cold-Electron Bolometers for the 220 and 240 GHz Channels using an Oscillator Based on the High-Temperature YBCO Superconductor. Radiophys. Quant. Electron.
**2019**, 62, 7. [Google Scholar] [CrossRef] - Tarasov, M.A.; Kuzmin, L.S.; Edelman, V.S.; Mahashabde, S.; de Bernardis, P. Optical Response of a Cold-Electron Bolometer Array Integrated in a 345-GHz Cross-Slot Antenna. IEEE Trans. Appl. Supercond.
**2011**, 21, 3635. [Google Scholar] [CrossRef] - Matrozova, E.A.; Pankratov, A.L.; Gordeeva, A.V.; Chiginev, A.V.; Kuzmin, L.S. Absorption and cross-talk in a multipixel receiving system with cold-electron bolometers. Supercond. Sci. Technol.
**2019**, 32, 084001. [Google Scholar] [CrossRef] - Mukhin, A.S.; Gordeeva, A.V.; Revin, L.S.; Abashin, A.E.; Shishov, A.A.; Pankratov, A.L.; Mahashabde, S.; Kuzmin, L.S. Sensitivity and Noise of Cold-Electron Bolometer Arrays. Radiophys. Quant. Electron.
**2017**, 59, 754. [Google Scholar] [CrossRef] - Gordeeva, A.V.; Zbrozhek, V.O.; Pankratov, A.L.; Revin, L.S.; Shamporov, V.A.; Gunbina, A.A.; Kuzmin, L.S. Observation of photon noise by cold-electron bolometers. Appl. Phys. Lett.
**2017**, 110, 162603. [Google Scholar] [CrossRef][Green Version] - Tarasov, M.; Kuzmin, L.; Stepantsov, E.; Kidiyarova-Shevchenko, A. Quasioptical Terahertz Spectrometer Based on a Josephson Oscillator and a Cold Electron Nanobolometer. In Nanoscale Devices—Fundamentals and Applications, NATO Science Series; Chapter: Advanced Sensors of Electromagnetic Radiation; Springer: Dordrecht, The Netherlands, 2006; Volume 233. [Google Scholar]
- Stepantsov, E.; Tarasov, M.; Kalabukhov, A.; Kuzmin, L.; Claeson, T. THz Josephson properties of grain boundary YBaCuO junctions on symmetric, tilted bicrystal sapphire substrates. J. Appl. Phys.
**2004**, 96, 3357. [Google Scholar] [CrossRef][Green Version] - Kunkel, G.; Bode, M.; Wang, F.; Faley, M.I.; Siegel, M.; Zander, W.; Schubert, J.; Poppe, U.; Braginski, A.I. Comparison of Josephson radiation properties of different YBa
_{2}Cu_{3}O_{7}thin film junctions. Proc. SPIE Int. Soc. Opt. Eng.**1994**, 2160, 33. [Google Scholar] - Batov, I.E.; Jin, X.Y.; Shitov, S.V.; Koval, Y.; Muller, P.; Ustinov, A.V. Detection of 0.5 THz radiation from intrinsic Bi
_{2}Sr_{2}CaCu_{2}O_{8}Josephson junctions. Appl. Phys. Lett.**2006**, 88, 262504. [Google Scholar] [CrossRef] - An, D.Y.; Yuan, J.; Kinev, N.; Li, M.Y.; Huang, Y.; Ji, M.; Zhang, H.; Sun, Z.L.; Kang, L.; Jin, B.B. Terahertz emission and detection both based on high-Tc superconductors: Towards an integrated receiver. Appl. Phys. Lett.
**2013**, 102, 092601. [Google Scholar] [CrossRef][Green Version] - Tarasov, M.; Stepantsov, E.; Lindstrom, T.; Lohmus, A.; Ivanov, Z. Submillimeter-wave quasioptical integrated tester based on bicrystal Josephson junctions. Physica C
**2002**, 372–376, 347. [Google Scholar] [CrossRef] - Ozyuzer, L.; Koshelev, A.E.; Kurter, C.; Gopalsami, N.; Li, Q.; Tachiki, M.; Kadowaki, K.; Yamamoto, T.; Minami, H.; Yamaguchi, H. Emission of coherent THz radiation from superconductors. Science
**2007**, 318, 1291. [Google Scholar] [CrossRef][Green Version] - Kakeya, I.; Omukai, Y.; Yamamoto, T.; Kadowaki, K.; Suzuki, M. Effect of thermal inhomogeneity for terahertz radiation from intrinsic Josephson junction stacks of BSCCO. Appl. Phys. Lett.
**2012**, 100, 242603. [Google Scholar] [CrossRef][Green Version] - Shaikhaidarov, R.; Antonov, V.N.; Casey, A.; Kalaboukhov, A.; Kubatkin, S.; Harada, Y.; Onomitsu, K.; Tzalenchuk, A.; Sobolev, A. Detection of Coherent Terahertz Radiation from a High-Temperature Superconductor Josephson Junction by a Semiconductor Quantum-Dot Detector. Phys. Rev. Appl.
**2016**, 5, 024010. [Google Scholar] [CrossRef][Green Version] - Nagatsuma, T.; Enpuku, K.; Yoshida, K.; Irie, F. Flux-flow-type Josephson oscillator for millimeter and submillimeter wave region. II. Modeling. J. Appl. Phys.
**1984**, 56, 3284. [Google Scholar] [CrossRef] - Yoshida, K.; Nagatsuma, T.; Sueoka, K.; Enpuku, K.; Irie, F. Effects of junction geometry on performance of flux-flow type Josephson oscillator. IEEE Trans. Magn.
**1985**, 21, 899. [Google Scholar] [CrossRef] - Zhang, Y.M.; Winkler, D.; Claeson, T. Linewidth measurements of Josephson flux-flow oscillators in the band 280–330 GHz. Appl. Phys. Lett.
**1993**, 62, 3195. [Google Scholar] [CrossRef] - Koshelets, V.P.; Shchukin, A.; Lapytskaya, I.L.; Mygind, J. Spectral linewidth of autonomous and injection-locked flux-flow oscillators. Phys. Rev. B
**1995**, 51, 6536. [Google Scholar] [CrossRef][Green Version] - Ustinov, A.V.; Kohlstedt, H.; Henne, P. Giant Radiation Linewidth of Multifluxon States in Long Josephson Junctions. Phys. Rev. Lett.
**1996**, 77, 3617. [Google Scholar] [CrossRef] - Koshelets, V.P.; Shitov, S.V.; Shchukin, A.V.; Filippenko, L.V.; Mygind, J.; Ustinov, A.V. Self-pumping effects and radiation linewidth of Josephson flux-flow oscillators. Phys. Rev. B
**1997**, 56, 5572. [Google Scholar] [CrossRef][Green Version] - Koshelets, V.P.; Dmitriev, P.N.; Sobolev, A.S.; Pankratov, A.L.; Khodos, V.V.; Vaks, V.L.; Baryshev, A.M.; Wesselius, P.R.; Mygind, J. Line width of Josephson flux flow oscillators. Physica C
**2002**, 372–376, 316. [Google Scholar] [CrossRef] - Carapella, G.; Martucciello, N.; Costabile, G. Experimental investigation of flux motion in exponentially shaped Josephson junctions. Phys. Rev. B
**2002**, 66, 134531. [Google Scholar] [CrossRef][Green Version] - Nagatsuma, T.; Enpuku, K.; Sueoka, K.; Yoshida, K.; Irie, F. Flux-flow-type Josephson oscillator for millimeter and submillimeter wave region. III. Oscillation stability. J. Appl. Phys.
**1985**, 58, 441. [Google Scholar] [CrossRef] - YZhang, M.; Wu, P.H. Numerical calculation of the height of velocity-matching step of flux-flow type Josephson oscillator. J. Appl. Phys.
**1990**, 68, 4703. [Google Scholar] [CrossRef] - Soriano, C.; Costabile, G.; Parmentier, R.D. Coupling of Josephson flux-flow oscillators to an external RC load. Supercond. Sci. Technol.
**1996**, 9, 578. [Google Scholar] [CrossRef] - Salerno, M.; Samuelsen, M.R. Phase locking and flux-flow resonances in Josephson oscillators driven by homogeneous microwave fields. Phys. Rev. B
**1999**, 59, 14653. [Google Scholar] [CrossRef][Green Version] - Cirillo, M.; Merlo, V.; Gronbech-Jensen, N. Analysis of linear branches in the IV characteristics of Josephson junctions. IEEE Trans. Appl. Supercond.
**1999**, 9, 4139. [Google Scholar] [CrossRef] - Pankratov, A.L. Long Josephson junctions with spatially inhomogeneous driving. Phys. Rev. B
**2002**, 66, 134526. [Google Scholar] [CrossRef][Green Version] - Pankratov, A.L.; Sobolev, A.S.; Koshelets, V.P.; Mygind, J. Influence of surface losses and the self-pumping effect on current-voltage characteristics of a long Josephson junction. Phys. Rev. B
**2007**, 75, 184516. [Google Scholar] [CrossRef][Green Version] - Matrozova, E.A.; Revin, L.S.; Pankratov, A.L. The effect of bias feed profile on the linewidth of noisy Josephson flux flow oscillator. J. Appl. Phys.
**2012**, 112, 053905. [Google Scholar] [CrossRef][Green Version] - Pankratov, A.L. Minimizing the linewidth of the flux-flow oscillator. Appl. Phys. Lett.
**2008**, 92, 082504. [Google Scholar] [CrossRef][Green Version] - Pankratov, A.L. Noise self-pumping in long Josephson junctions. Phys. Rev. B
**2008**, 78, 024515. [Google Scholar] [CrossRef] - Gulevich, D.R.; Koshelets, V.P.; Kusmartsev, F.V. Josephson flux-flow oscillator: The microscopic tunneling approach. Phys. Rev. B
**2017**, 96, 024515. [Google Scholar] [CrossRef][Green Version] - Gulevich, D.R.; Koshelets, V.P.; Kusmartsev, F.V. Bridging the terahertz gap for chaotic sources with superconducting junctions. Phys. Rev. B
**2019**, 99, 060501. [Google Scholar] [CrossRef][Green Version] - Gulevich, D.R.; Filippenko, L.V.; Koshelets, V.P. Microscopic Tunneling Model of Nb-AlN-NbN Josephson Flux-Flow Oscillator. J. Low Temp. Phys.
**2019**, 194, 312. [Google Scholar] [CrossRef][Green Version] - Winkler, D.; Zhang, Y.M.; Nilsson, P.A.; Stepantsov, E.A.; Claeson, T. Electromagnetic properties at the grain boundary interface of a YBa
_{2}Cu_{3}O_{7}bicrystal Josephson junction. Phys. Rev. Lett.**1994**, 72, 1260. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.M.; Winkler, D.; Nilsson, P.-A.; Claeson, T. Josephson flux-flow resonances in overdamped long YBa
_{2}Cu_{3}O_{7}grain-boundary junctions. Phys. Rev. B**1995**, 51, 8684. [Google Scholar] [CrossRef] - Sung, H.H.; Yang, S.Y.; Horng, H.E.; Yang, H.C. Flux motion in YBCO biepitaxial Josephson junctions. IEEE Trans. Appl. Supercond.
**1999**, 9, 3937. [Google Scholar] [CrossRef] - Lombardi, F.; di Uccio, U.S.; Ivanov, Z.; Claeson, T.; Cirillo, M. Flux flow in YBCO grain-boundary Josephson junctions with a four-terminal configuration. Appl. Phys. Lett.
**2000**, 76, 2591. [Google Scholar] [CrossRef] - Kuzmin, L.S.; Sobolev, A.S.; Beiranvand, B. Wideband Double-Polarized Array of Cold-Electron Bolometers for OLIMPO Balloon Telescope. IEEE Trans. Anten. Prop.
**2020**, 68, in press. [Google Scholar] [CrossRef] - Revin, L.S.; Chiginev, A.V.; Pankratov, A.L.; Masterov, D.V.; Parafin, A.E.; Luchinin, G.A.; Matrozova, E.A.; Kuzmin, L.S. The effect of bias current asymmetry on the flux-flow steps in the grain boundary YBaCuO long Josephson junctions. J. Appl. Phys.
**2013**, 114, 243903. [Google Scholar] [CrossRef][Green Version] - Revin, L.S.; Pankratov, A.L.; Chiginev, A.V.; Masterov, D.V.; Parafin, A.E.; Pavlov, S.A. Asymmetry of the velocity-matching steps in YBCO long Josephson junctions. Supercond. Sci. Technol.
**2018**, 31, 045002. [Google Scholar] [CrossRef] - Revin, L.S.; Pankratov, A.L.; Masterov, D.V.; Parafin, A.E.; Pavlov, S.A.; Chiginev, A.V.; Skorokhodov, E.V. Features of Long YBCO Josephson Junctions Fabricated by Preliminary Topology Mask. IEEE Trans. Appl. Supercond.
**2018**, 28, 1100505. [Google Scholar] [CrossRef] - Pankratov, A.L.; Pankratova, E.V.; Shamporov, V.A.; Shitov, S.V. Oscillations in Josephson transmission line stimulated by load in the presence of noise. Appl. Phys. Lett.
**2017**, 110, 112601. [Google Scholar] [CrossRef] - Tafuri, F.; Kirtley, J.R. Weak links in high critical temperature superconductors. Rep. Prog. Phys.
**2005**, 68, 2573. [Google Scholar] [CrossRef]

**Figure 2.**Current-voltage characteristic of bolometer for the case of no signal and under the YBCO JJ radiation. The inset: CEBs response as a function of bias current. The mark corresponds to the used bias.

**Figure 3.**Left: CEBs voltage (solid curve) and a fitting spline (dashed curve). Right: current-voltage characteristic of YBCO oscillator.

**Figure 4.**CEBs response depending on YBCO voltage (oscillation frequency). Comparison of the CEBs signal from BWO and YBCO sources. Signatures of YBCO and YBCO FFO correspond to the case of zero magnetic field and case of magnetic field variation.

**Figure 5.**The experimental $IV$ curves of bicrystal junction L = 50 $\mathsf{\mu}$m correspond to the increasing magnetic field (from top to bottom). The color indicates the level of CEBs response.

**Figure 6.**CEBs response for increasing magnetic fields through the YBCO oscillator. For convenience, the curves starting from the second one are shifted up by 0.5 mV relative to the previous one. Marks correspond to the local maximum of each smoothed characteristic.

**Figure 7.**The maximum response depending on YBCO voltage for bicrystal junction with the length L = 50 $\mathsf{\mu}$m for phase rotation regime (blue solid curve) and traveling wave regime (red dashed curve).

**Figure 8.**The theoretical IV curves correspond to increasing magnetic field $\Gamma $ (from top to bottom). The color indicates the level of radiated power. The inset: Power P for various magnetic fields ($\Gamma $ = 0.6; 1.6; 2.6) versus normalized voltage.

**Figure 9.**The maximum value of power level depending on voltage for phase rotation regime (blue solid curve) and traveling wave regime (red dashed curve).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Revin, L.; Pankratov, A.; Gordeeva, A.; Masterov, D.; Parafin, A.; Zbrozhek, V.; Kuzmin, L. Response of a Cold-Electron Bolometer on THz Radiation from a Long YBa_{2}Cu_{3}O_{7−δ} Bicrystal Josephson Junction. *Appl. Sci.* **2020**, *10*, 7667.
https://doi.org/10.3390/app10217667

**AMA Style**

Revin L, Pankratov A, Gordeeva A, Masterov D, Parafin A, Zbrozhek V, Kuzmin L. Response of a Cold-Electron Bolometer on THz Radiation from a Long YBa_{2}Cu_{3}O_{7−δ} Bicrystal Josephson Junction. *Applied Sciences*. 2020; 10(21):7667.
https://doi.org/10.3390/app10217667

**Chicago/Turabian Style**

Revin, Leonid, Andrey Pankratov, Anna Gordeeva, Dmitry Masterov, Alexey Parafin, Viktor Zbrozhek, and Leonid Kuzmin. 2020. "Response of a Cold-Electron Bolometer on THz Radiation from a Long YBa_{2}Cu_{3}O_{7−δ} Bicrystal Josephson Junction" *Applied Sciences* 10, no. 21: 7667.
https://doi.org/10.3390/app10217667