Improved Short Memory Principle Method for Solving Fractional Damped Vibration Equations
Abstract
1. Introduction
2. Memory Effect of Fractional Differential
3. Improved SMP
4. Examples Analysis
4.1. Free Vibration
4.2. Forced Vibration
4.3. Two-Degree-of-Freedom Vibration Reduction Model of Vehicle Suspension
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Miller, K.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Ichise, M.; Nagayanagi, Y.; Koijima, T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 1971, 33, 253–265. [Google Scholar] [CrossRef]
- Sun, H.H.; Onaral, B.; Tsao, Y. Application of the positive reality principle to metal electrode linear polarization phenomena. IEEE Trans. Biomed. Eng. BME 1984, 31, 664–674. [Google Scholar] [CrossRef]
- Sun, H.H.; Abdelwahab, A.A.; Onaral, B. Linear approximation of transfer function with a pole of fractional power. IEEE Trans. Automat. Control 1984, 29, 441–444. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering: Part 1. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L. Fractional Calculus in Bioengineering: Part 2. Crit. Rev. Biomed. Eng. 2004, 32, 105–193. [Google Scholar] [CrossRef] [PubMed]
- Magin, R.L. Fractional Calculus in Bioengineering: Part 3. Crit. Rev. Biomed. Eng. 2004, 32, 194–377. [Google Scholar]
- Hartley, T.T.; Lorenzo, C.F.; Kammar, H.K. Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1995, 42, 485–490. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio fractional derivative to solve the fractional model of energy supply-demand system. Math. Model. Eng. Probl. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Bagley, R.L.; Torvik, P.J. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 1985, 23, 918–1025. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 2010, 63, 10801-1–10801-51. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic: San Diego, CA, USA, 1999. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College: London, UK, 2010. [Google Scholar]
- Baleanu, D.; Machado, J.A.T.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Tan, W.; Xu, M. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model. Acta Mech. Sin. 2002, 18, 342–349. [Google Scholar]
- Schiessel, H.; Metzler, R.; Blumen, A.; Nonnenmacher, T.F. Generalized viscoelastic models: Their fractional equations with solutions. J. Phys. A 1995, 28, 6567–6584. [Google Scholar] [CrossRef]
- Friedrich, C.; Braun, H. Linear viscoelastic behaviour of complex polymeric materials: A fractional mode representation. Colloid Polym. Sci. 1994, 272, 1536–1546. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems. ACTA Mech. 1997, 120, 109–125. [Google Scholar] [CrossRef]
- Spanos, P.D.; Zeldin, B.A. Random vibration of systems with frequency-dependent parameters or fractional derivatives. J. Eng. Mech. 1997, 123, 290–292. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives. Signal Process. 2006, 86, 2703–2711. [Google Scholar] [CrossRef]
- Nerantzaki, M.S.; Babouskos, N.G. Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 2012, 36, 1894–1907. [Google Scholar] [CrossRef]
- Cai, W.; Chen, W.; Xu, W.X. Fractional modeling of Pasternak-type viscoelastic foundation. Mech. Time Depend. Mater. 2017, 21, 119–131. [Google Scholar] [CrossRef]
- Di Paola, M.; Heuter, R.; Pirrotta, A. Fractional viscoelastic Euler Bernoulli beam. Int. J. Solids Struct. 2013, 50, 3505–3510. [Google Scholar] [CrossRef]
- Di Lorenzo, S.; di Paola, M.; Pinnola, F.P.; Pirrotta, A. Stochastic response of fractionally damped beams. Probab. Eng. Mech. 2013, 35, 37–43. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci. 2001, 39, 149–176. [Google Scholar] [CrossRef]
- Koh, C.G.; Kelly, L.M. Application of fractional derivatives to seismic analysis of base isolated models. Earthq. Eng. Struct. Dyn. 1990, 19, 229–241. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modelled by a fractional derivative. J. Eng. Math. 2000, 37, 343–362. [Google Scholar] [CrossRef]
- Spanos, P.D.; Malara, G. Nonlinear random vibrations of beams with fractional derivative elements. J. Eng. Mech. 2014, 140, 04014069. [Google Scholar] [CrossRef]
- Guo, Z.J.; Zhang, W. Hard-spring bistability and effect of system parameters in a two-degree-of-freedom vibration system with damping modeled by a fractional derivative. Int. J. Bifurc. Chaos 2016, 26, 1650078. [Google Scholar] [CrossRef]
- Jiang, J.F.; Cao, D.Q.; Chen, H.T.; Zhao, K. The vibration transmissibility of a single degree of freedom oscillator with nonlinear fractional order damping. Int. J. Mech. Sci. 2017, 48, 2379–2393. [Google Scholar] [CrossRef]
- Lewandowski, R.; Wielentejczyk, P. Nonlinear vibration of viscoelastic beams described using fractional order derivatives. J. Sound Vib. 2017, 399, 228–243. [Google Scholar] [CrossRef]
- Abdelouahab, M.S.; Hamri, N.E. The Gr”unwald-Letnikov fractional-order derivative with fixed memory length. Mediterr. J. Math. 2016, 13, 557–572. [Google Scholar] [CrossRef]
- Abedini, M.; Nojoumian, M.A.; Salarieh, H.; Meghdari, A. Model reference adaptive control in fractional order systems using discrete-time approximation methods. Commun. Nonlinear Sci. Numer. Simul. 2015, 25, 27–40. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Cheng, S.; Wang, Y. A note on short memory principle of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 1382. [Google Scholar] [CrossRef]
j | wj | j | wj | j | wj | j | wj |
---|---|---|---|---|---|---|---|
0 | 1 | 10 | −0.00298 | 150 | −0.0000212 | 700 | −1.32 × 10−6 |
1 | −0.8 | 20 | −0.000823 | 200 | −0.0000126 | 800 | −1.04 × 10−6 |
2 | −0.08 | 30 | −0.000392 | 250 | −8.44 × 10−6 | 900 | −8.39 × 10−7 |
3 | −0.032 | 40 | −0.000232 | 300 | −6.07 × 10−6 | 1000 | −6.94 × 10−7 |
4 | −0.0176 | 50 | −0.000155 | 350 | −4.60 × 10−6 | 1100 | −5.85 × 10−7 |
5 | −0.0113 | 60 | −0.000111 | 400 | −3.62 × 10-6 | 1200 | −5.00 × 10−7 |
6 | −0.00788 | 70 | −0.0000840 | 450 | −2.92 × 10−6 | 2930 | −1.00 × 10−7 |
7 | −0.00586 | 80 | −0.0000660 | 500 | −2.42 × 10−6 | 10,530 | −1.00 × 10−8 |
8 | −0.00454 | 90 | −0.0000533 | 550 | −2.04 × 10−6 | 37,870 | −1.00 × 10−9 |
9 | −0.00363 | 100 | −0.0000441 | 600 | −1.74 × 10−6 | 136,140 | −1.00 × 10−10 |
j | wj | j | wj | j | wj | j | wj |
---|---|---|---|---|---|---|---|
0 | 1 | 10 | −0.0110 | 150 | −0.000421 | 700 | −0.0000662 |
1 | −0.2 | 20 | −0.00475 | 200 | −0.000298 | 800 | −0.0000564 |
2 | −0.08 | 30 | −0.00291 | 250 | −0.000228 | 900 | −0.0000490 |
3 | −0.048 | 40 | −0.00206 | 300 | −0.000183 | 1000 | −0.0000432 |
4 | −0.0336 | 50 | −0.00157 | 350 | −0.000152 | 3380 | −1.00 × 10−5 |
5 | −0.0255 | 60 | −0.00126 | 400 | −0.000130 | 23,040 | −1.00 × 10−6 |
6 | −0.0204 | 70 | −0.00105 | 450 | −0.000113 | 156,970 | −1.00 × 10−7 |
7 | −0.0169 | 80 | −0.000895 | 500 | −0.0000992 | 1,069,400 | −1.00 × 10−8 |
8 | −0.0144 | 90 | −0.000777 | 550 | −0.0000884 | 7,225,900 | −1.00 × 10−9 |
9 | −0.0125 | 100 | −0.000685 | 600 | −0.0000797 | 45,849,200 | −1.00 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Han, J.; Yan, X. Improved Short Memory Principle Method for Solving Fractional Damped Vibration Equations. Appl. Sci. 2020, 10, 7566. https://doi.org/10.3390/app10217566
Ma R, Han J, Yan X. Improved Short Memory Principle Method for Solving Fractional Damped Vibration Equations. Applied Sciences. 2020; 10(21):7566. https://doi.org/10.3390/app10217566
Chicago/Turabian StyleMa, Ruiqun, Jinglong Han, and Xiaoxuan Yan. 2020. "Improved Short Memory Principle Method for Solving Fractional Damped Vibration Equations" Applied Sciences 10, no. 21: 7566. https://doi.org/10.3390/app10217566
APA StyleMa, R., Han, J., & Yan, X. (2020). Improved Short Memory Principle Method for Solving Fractional Damped Vibration Equations. Applied Sciences, 10(21), 7566. https://doi.org/10.3390/app10217566