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Abstract: In this paper, an improved short memory principle based on the Grünwald–Letnikov
definition is proposed and applied in solving fractional vibration differential equations. The improved
idea is to adjust the truncation of memory time in short memory principle (SMP) to the truncation of
binomial coefficient terms, and the finite coefficients are repeatedly applied to the step size gradually
enlarged. In this method, a very small initial step size is used to meet the accuracy requirements,
and then the step size is gradually enlarged to prolong the memory time and reduce the amount
of calculation. Examples of free vibration, forced vibration with a single-degree-of-freedom and a
vehicle suspension two-degree-of-freedom vibration reduction model verify the method’s accuracy
and effectiveness.
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1. Introduction

The general concept of fractional derivative appears nearly at the same time as integer derivative.
At this time, Leibniz expressed the derivative of integer order as dny/dxn where n as an integer.
Then, in 1695, he and L’Hospital discussed the significance of the derivative when n = 1/2 [1].
Fractional calculus did not make good progress in its early development due to the lack of a unified and
widely accepted definition. Until the mid-19th century, mathematicians proposed some meaningful
definitions of fractional calculus, such as the Grünwald–Letnikov, Riemann–Liouville and Caputo
definitions, and then the field of fractional calculus was really established. In recent decades,
fractional calculus has been widely used in electrochemical processes [2,3], dielectric polarisation [4],
bioengineering [5–7], chaos [8], energy supply–demand system [9], viscoelastic mechanics [10,11] and
other emerging fields.

Viscoelastic materials are widely used in vibration and noise reduction fields, such as
automobiles, airplanes and buildings. For example, the elastomeric lag dampers of helicopters
are a single-degree-of-freedom damping mechanism. During operation, viscoelastic materials convert
mechanical energy into heat energy to achieve the purpose of vibration reduction. Many experiments
have shown that the stress relaxation of many viscoelastic materials is non-exponential and have
a historical memory property. The traditional integer-order viscoelastic differential constitutive
model cannot accurately describe the mechanical behaviour of viscoelastic materials. However,
reasonable results can be obtained by using the fractional constitutive model to describe the stress–strain
relationship of viscoelastic materials [12–19]. In the past 20 years, many studies have introduced the
fractional differential constitutive model into vibration analysis with viscoelastic damping. On the basis
of the fractional Kelvin–Voigt and Maxwell models, the free damped vibration of the oscillator was
analysed in reference [20]. [21] investigated the random vibration of a frequency-dependent fractional
derivative dynamic system and proposed a standard formula for predicting the random vibration
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response. The vibration of a rectangular plate with fractional damping and the effect of viscosity on the
overall vibration response were studied [22]. The dynamic response of a plane inhomogeneous
anisotropic body composed of linear viscoelastic materials was investigated, and a numerical
method for solving multi-term fractional differential equations was developed [23]. In reference [24],
a variable fractional-order Pasternak-type viscoelastic model is proposed, and the governing equation
is established. The results show that the model’s fractional order has a great influence on deflection and
the bending moment. The response of the Euler–Bernoulli beams with fractional order viscoelasticity
under quasi-static and dynamic loads and the random vibration response of beams with fractional
damping were studied in [25] and [26]. The nonstationary vibrations of linear viscoelastic single-,
two- and multi-degree-of-freedom mechanical systems with a fractional derivative instead of an
ordinary derivative were investigated [27]. The application of a fractional-derivative-based isolation
model in seismic vibration analysis is discussed in [28]. Nonlinear fractional order systems have also
been greatly developed [29–33].

Given the history memory property of the time fractional derivative, a large amount of data
is involved in the calculation to obtain more accurate results in the numerical solution process.
Reference [12] proposes the short memory principle (SMP) which refers to intercepting the most
recent time period and ignoring the time period with less impact and farther away. SMP was
used to verify that the fractional derivative of the periodic function is still a periodic function [34].
Through the combination of the SMP and the Grünwald–Letnikov definition, the model reference
adaptive control of the fractional order system was studied [35]. According to the classical SMP
under the Grünwald–Letnikov definition, Wei et al. proposed and studied several novel SMPs [36].
The traditional SMP may bring large errors, for example, the free vibration cannot return to the
equilibrium position. Especially when the fractional order tends to 0, the memory time intercepted by
the SMP may be extremely large to ensure calculation accuracy.

This paper proposes an improved SMP based on the Grünwald–Letnikov definition.
The improvement aims to adjust the truncation of memory time to the truncation of binomial
coefficients. To ensure calculation accuracy, a small step size is initially used. If the number of calculated
data points exceeds the number of binomial coefficients, the step size will be enlarged for the limited
binomial coefficients to cover a large time area. This improvement aims to obtain more accurate results
with as little data as possible. In this paper, a single-degree-of-freedom free vibration example is used
to verify the accuracy and reliability of the method.

2. Memory Effect of Fractional Differential

Unlike the integer order differential, time fractional differential has a historical memory which
becomes stronger or weaker with the change of the fractional order. For the fractional differential based
on the Grünwald–Letnikov definition, this change is directly reflected in the binomial coefficients.
The Grünwald–Letnikov definition is

GL
t0

Dα
t f (t) = lim

h→0

1
hα

[(t−t0)/h]∑
j=0

(−1) j
(
α
j

)
f (t− jh) (1)

where h is the time step size. If h is sufficiently small, then the limit operation can be ignored and
changed into the following form:

GL
t0

Dα
t f (t) =

1
hα

[(t−t0)/h]∑
j=0

w j f (t− jh) (2)
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where w j = (−1) j
(
α
j

)
is the coefficient of binomial (1− z)α:

w j =

∏ j
i=1(n− α− 1)

j!
, j = 1, 2, · · · (3)

To avoid the calculation of the Gamma function, the recursive form is adopted:

w j =

(
1−

α+ 1
j

)
w j−1, j = 1, 2, · · · (4)

The initial term is w0 =
(−1)0Γ(α+1)

Γ(0+1)Γ(α−0+1) = 1.
w j is the weighted coefficient of the function value of the time interval of j steps from the current

time, i.e., the binomial coefficient. The coefficient on the left side of the equal sign of the recurrence
formula which is less than 1 indicates that this weighting coefficient decreases with the increase of the
time interval. The weighting coefficient is also related to the order of derivation. At the same step
size, the coefficient decreases with the increase of α. In other words, within 0 < α < 1, the memory of
the fractional differential decreases with the increase of the derivative order; on the contrary, when α
tends to 0, the memory is enhanced. Tables 1 and 2 provide some binomial coefficients when α = 0.8
and α = 0.2, respectively. The two tables indicate that the absolute value of w j tends to decrease as j
increases, and the rate of decrease decelerates. Table 1 shows that it takes only approximately 60 items
to decay from w0 = 1 to −1.00 × 10−4, and the items whose absolute value decreases by approximately
10 times are w200, w800, w2930, w10530 and w37870 and attenuate to −1.00 × 10−10, requiring approximately
136,140 items. Although the speed of attenuation decelerates, the limited items intercepted by the SMP
are sufficient to ensure calculation accuracy. In Table 2, 70 items are needed to attenuate from w0 = 1
to −1.00 × 10−3, and then the items whose absolute value decreases by approximately 10 times are
w450, w3380, w23040, w156970, w1069400, w7225900 and w45849200. The attenuation to −1.00 × 10−10 requires
45,849,200 items. More than 38 million items from −1.00 × 10−9 to −1.00 × 10−10, i.e., the truncated items
with only 10−10 impact on the current moment will also cause approximately 10−2 effects. Therefore,
the SMP must be improved.

Given the initial conditions, the fractional damped single-degree-of-freedom vibration equation is
as follows: {

m
..
x + cDαx + kx = 0
x0 = 0,

.
x0 = 1

(5)

where m, c, k and α are the mass, the damping coefficient, the stiffness coefficient and the fractional
order, respectively. The Taylor auxiliary function is introduced to change the non-zero initial condition
into zero initial condition. The Taylor auxiliary function form is as follows:

T(t) =
q∑

k=0

x(k)t0
k!

(t− t0) (6)

where q is the order of the equation. Obviously, T(t) = t in this example. The equation is constructed
as follows:

x(t) = z(t) + T(t) (7)

Then, the initial condition of auxiliary function T(t) is the same as that of x(t), and z(t) is a signal
with zero initial conditions. By substituting the construction formula into Equation (5), we obtain
the following: {

m
..
z + cDαz + kz = −cDαt− kt

z0 = 0,
.
z0 = 0

(8)
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According to the derivative definition, step size h is taken to discretise the equation in time and
sort it out as follows:

z j =
1

m
h2 +

c
hα + k

−m
h2

(
−2z j−1 + z j−2

)
−

c
hα

j∑
i=1

wiz j−i −
Γ(2)

Γ(2− α)
( jh)α − k( jh)

 (9)

The SMP method is used to change the upper limit of the accumulation item on the right to a fixed
value (Nt). By substituting the obtained z(t) into Equation (7), the numerical solution of the original
equation is obtained.

Table 1. Partial binomial coefficients for α = 0.8.

j wj j wj j wj j wj

0 1 10 −0.00298 150 −0.0000212 700 −1.32 × 10−6

1 −0.8 20 −0.000823 200 −0.0000126 800 −1.04 × 10−6

2 −0.08 30 −0.000392 250 −8.44 × 10−6 900 −8.39 × 10−7

3 −0.032 40 −0.000232 300 −6.07 × 10−6 1000 −6.94 × 10−7

4 −0.0176 50 −0.000155 350 −4.60 × 10−6 1100 −5.85 × 10−7

5 −0.0113 60 −0.000111 400 −3.62 × 10-6 1200 −5.00 × 10−7

6 −0.00788 70 −0.0000840 450 −2.92 × 10−6 2930 −1.00 × 10−7

7 −0.00586 80 −0.0000660 500 −2.42 × 10−6 10,530 −1.00 × 10−8

8 −0.00454 90 −0.0000533 550 −2.04 × 10−6 37,870 −1.00 × 10−9

9 −0.00363 100 −0.0000441 600 −1.74 × 10−6 136,140 −1.00 × 10−10

Table 2. Partial binomial coefficients for α = 0.2

j wj j wj j wj j wj

0 1 10 −0.0110 150 −0.000421 700 −0.0000662
1 −0.2 20 −0.00475 200 −0.000298 800 −0.0000564
2 −0.08 30 −0.00291 250 −0.000228 900 −0.0000490
3 −0.048 40 −0.00206 300 −0.000183 1000 −0.0000432
4 −0.0336 50 −0.00157 350 −0.000152 3380 −1.00 × 10−5

5 −0.0255 60 −0.00126 400 −0.000130 23,040 −1.00 × 10−6

6 −0.0204 70 −0.00105 450 −0.000113 156,970 −1.00 × 10−7

7 −0.0169 80 −0.000895 500 −0.0000992 1,069,400 −1.00 × 10−8

8 −0.0144 90 −0.000777 550 −0.0000884 7,225,900 −1.00 × 10−9

9 −0.0125 100 −0.000685 600 −0.0000797 45,849,200 −1.00 × 10−10

To facilitate the calculations, m, c and k are all taken as 1, and α is taken as 0.8 and 0.2. The step
size is h = 0.001, and the number of truncation items is Nt = 1000, 2000, 3000, 5000; that is, the memory
times of the interception are 1, 2, 3 and 5 s, respectively. The numerical results using the SMP and the
original definition are shown in Figures 1 and 2.

Given the relatively small magnitude of error, determining whether to return to the equilibrium
position on the response curve is difficult. Therefore, the error between the numerical solution using
the SMP and the original definition (i.e., the difference between the numerical solution using the SMP
minus the original definition solution) is taken for analysis, as shown in Figures 3 and 4. The figures
show the following: (1) as the memory time increases, the calculation error decelerates; (2) none tends
towards the equilibrium position; (3) the order of the fractional derivative tends to 0, and the same
number of truncated steps will bring greater error.

Figure 5 shows the response curves of the numerical and analytical solutions for different cases
with α = 0.5. The error results between the numerical and analytical solution (Laplace transform
method) are shown in Figure 6. Obviously, (1) if no truncation exists, the response curves will return to
the equilibrium position, and the results of small steps will be more accurate, but will increase the
amount of calculation; (2) the truncation memory time will reduce the amount of calculation, but will
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bring greater error and will not tend towards the equilibrium position. Therefore, this paper proposes
an improved SMP to reduce the amount of calculation while ensuring the accuracy of calculation as
much as possible.

Figure 1. Numerical solutions of original definition method (No truncation) and short memory principle
(SMP) method (Nt = 1000, 2000, 3000, 5000) for α = 0.8.

Figure 2. Numerical solutions of original definition method (No truncation) and SMP method (Nt =

1000, 2000, 3000, 5000) for α = 0.2.
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Figure 3. The errors between the SMP numerical solution (Nt = 1000, 2000, 3000, 5000) and the original
definition numerical solution (No truncation) for α = 0.8.

Figure 4. The errors between the SMP numerical solution (Nt = 1000, 2000, 3000, 5000) and the original
definition numerical solution (No truncation) for α = 0.2.
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Figure 5. Displacement response for different methods (Laplace transform method, original definition
method and SMP method).

Figure 6. Errors between numerical solution (original definition method h = 0.01, 0.001 and SMP
method h = 0.001 and Nt = 2000) and exact solution (α = 0.5).
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3. Improved SMP

The calculation formula of the binomial coefficient indicates that when the number of terms is
sufficiently large, the change is very small because lim

N→+∞

N−α−1
N = 1. Especially when the fractional

order approaches 0, a long enough memory time is required to ensure the calculation accuracy.
This paper is based on the traditional SMP to improve the calculation accuracy and reduce the amount
of calculation. This improvement aims to replace the truncation of time with the truncation of the
binomial coefficient in the traditional SMP and gradually increase the step size, so that the binomial
coefficient of the finite term can cover a sufficiently long time range. The traditional SMP shown
in Figure 7 indicates that the memory time length is L1 = Nth1 where Nt is the number of binomial
coefficient terms intercepted.

Figure 7. The schematic of SMP (L1 = Nth1).

Figure 8 shows that when calculating the number of steps (k ≤ Nt), the total memory time is less
than or equal to the memory time of the SMP, requiring no step size adjustment.

Figure 8. Schematic diagram of original definition method (k ≤ Nt).

The SMP after the first adjustment and amplification is shown in Figure 9. The step size h1 for the
first enlargement h2 = nh1, so that the memorable time length becomes L2 = Nth2 = nL1, where n is
the step size magnification, and n = 2 in the example figures. Given that L1 has already been calculated,
this part need not be calculated after the step size is enlarged.

Figure 9. Schematic diagram of extracting function value by the first enlargement of step size
(Nt < k ≤ nNt).

Figure 10 shows the entire second step enlargement and a part of the third step enlargement.
The second step enlargement uses the same magnification, h3 = nh2 = n2h1, and the memorable time
length is L3 = Nth3 = nL2 = n2L1.
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Figure 10. Schematic diagram of extracting function value by the first enlargement of step size
(nNt < k ≤ n2Nt and k ≥ n2Nt).

The calculation formula should be adjusted accordingly. When the number of steps is k ≤ Nt,
the expression is

GL
t0

Dα
t f (k h1) =

1
h1
α

k∑
i=0

wi f ((k− i)h1) (10)

When the number of steps is Nt < k ≤ nNt, the expression is

GL
t0

Dα
t f (k h1) =

1
h1
α

Nt∑
i=0

wi f ((k− i)h1) +
1

h2α

b∑
i=a

wi f ((k− ni)h1) (11)

where a and b are Nt/n + 1 and Nt/n + [(k−Nt)/n], respectively, and [·]denotes rounding down.
The expression when the number of steps is nNt < k ≤ n2Nt is

GL
t0

Dα
t f (k h1) =

1
h1
α

Nt∑
i=0

wi f ((k− i)h1) +
1

h2α

Nt∑
i=a

wi f ((k− ni)h1) +
1

h3α

d∑
i=a

wi f
((

k− n2i
)
h1

)
(12)

where d is Nt/n +
[
(k− nNt)/n2

]
.

4. Examples Analysis

4.1. Free Vibration

The single-degree-of-freedom fractional-order-damped free vibration differential equation is
selected taking α = 0.5 conveniently finds the analytical solution. The calculation is carried out in
five cases for 20 s: (1) step size h = 0.001, no truncation; (2) step size h = 0.0001, no truncation;
(3) step size h = 0.001, the number of coefficient truncation items Nt = 1000, step size magnification
n = 5; (4) step size h = 0.0001, the number of coefficient truncation terms Nt = 2000, the step size
magnification n = 15; (5) step size h = 0.0001, the number of coefficient truncation terms Nt = 1000,
and the step size magnification n = 30. The resulting curve nearly coincides with the exact solution
(Laplace transform method) because the error obtained by this method is much smaller than the
classical short memory principle. Therefore, the error between the numerical results and the exact
solution (i.e., numerical solution minus the exact solution) is compared. The calculation error results
are shown in Figure 11. All cases tend towards the equilibrium position, and the two lines with step
size of h = 0.001 and h = 0.0001 have no coefficient truncation, indicating that the smaller the step
size is, the smaller the error will be. Two error curves have h = 0.001, i.e., the red dashed line without
coefficient truncation and the green dotted line with coefficient truncation. Although the curves are
nearly coincident, the amount of computation with coefficient truncation is much less than that without
coefficient truncation. Although the error of the fourth case is not consistent with the fluctuation
position of the error of the second case without coefficient truncation, the error amplitude is roughly
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the same, also showing the effectiveness of coefficient truncation. In the fifth case, although the initial
step size is very small, the effective time of the basic step size is only L1 = Nth1 = 0.1, and the step
magnification is extremely large, so the error is relatively large.

Figure 11. The errors between the two numerical methods (the original defined and the improved
SMP) and the Laplace transform method.

When using this method, the number of truncated items and the step size magnification must be
coordinated with each other. When the number of truncated items is small, the step size magnification
must be reduced, and when the number of truncated items is large, the step size magnification can
be appropriately increased. Taking the last numerical result of the second and fourth cases as an
example, the comparison of the calculation amounts show that 200,000 items participate in the addition
calculation without coefficient truncation, but only approximately 4622 items participate in the addition
calculation after the truncation.

4.2. Forced Vibration

The improved SMP can make the free vibration return to the equilibrium position. Next, look at
the forced vibration. The equation is as follows:{

m
..
x + cDαx + kx = sin(t)

x0 = 0,
.
x0 = 0

(13)

m, c, k are also taken as 1, α = 0.5. Equation (13) uses the original fractional definition method, the SMP
method (Nt = 3000, 10,000) and the improved SMP method (Nt = 3000, n = 10). The time size is
h = 0.0001, and the response curves of 30s are calculated as shown in Figure 12. It can be seen that
the numerical solution obtained by the improved SMP method almost coincides with the result of
the original definition method, while the result obtained by the SMP method is quite different from
them. First of all, the peak value of the curve obtained by the SMP method (Nt = 3000) is smaller than
the original definition method; secondly, the SMP method also introduces a visible phase difference,



Appl. Sci. 2020, 10, 7566 11 of 16

which leads to a larger displacement difference at the same time. The numerical curve obtained by
the SMP method (Nt = 10,000) almost completely corrects the phase difference, but its peak value
is much higher than the curve obtained by the original definition method. Further, get their error
curves (SMP Nt = 10,000 and improved SMP Nt = 3000, n = 10), as shown in Figure 13. The improved
SMP adds the time beyond the memory time of the classical SMP by adjusting the step size, and the
numerical solution which is very close to the original numerical solution can be obtained. In terms of
the amount of calculation, the original definition method has 300,000 items involved in the addition
operation in the last step of this example, while the improved SMP has only 8400 items. Although the
SMP method (Nt = 10,000) participates in the addition calculation more items than the improved SMP
method, it still brings large errors.

4.3. Two-Degree-of-Freedom Vibration Reduction Model of Vehicle Suspension

The suspension damping mechanism of the vehicle is simplified to a two-degree-of-freedom
model, as shown in Figure 14a. The force analysis is shown in Figure 14b. The constitutive model of
viscoelastic material adopts the fractional Kelvin–Voigt model:

σ(t) = µε(t) + ηDαε(t) (14)

Figure 12. Forced vibration response.
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Figure 13. Error of the two SMP methods (SMP and improved SMP).

Figure 14. Two-degree-of-freedom model of suspension structure.

The equations of motion for each mass are

m1
..
x1 = (x0 − x1)ke − Fcm2

..
x2 = Fc (15)

The stress and strain of viscoelastic material are

σ =
Fc

A
ε = (x1 − x2)/l (16)
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where A and l are the cross-sectional area and height of viscoelastic material, respectively.
Substituting Equations (15) and (16) into (14), the equation of motion of the system can be sorted
as follows:  m1

..
x1 +

Aη
l Dαx1 −

Aη
l Dαx2 +

(
ke +

Aµ
l

)
x1 −

Aµ
l x2 = kex0

m2
..
x2 −

Aη
l Dαx1 +

Aη
l Dαx2 −

Aµ
l x1 +

Aµ
l x2 = 0

(17)

Rewritten into matrix form:
M

..
X + CDαX + KX = F (18)

where M =

[
m1 0
0 m2

]
, C =

[
Aη/l −Aη/l
−Aη/l Aη/l

]
, K =

[
ke + Aµ/l −Aµ/l
−Aµ/l Aµ/l

]
, F =

[
kex0

0

]
and

X =

[
x1

x2

]
.

This article focuses on introducing improved algorithms, so for the convenience of calculation,
all parameters except α and x0 are taken as 1. When α = 0.5 and x0 = sin(ωt) (ω is 2π), the step size
h = 0.01 is taken under the original definition method, and the displacements of masses 1 and 2 are
shown in Figures 15 and 16. The comparison of the two figures shows that the isolated mass m2 has a
better vibration reduction effect. Then use the SMP method (Nt = 1000) and the improved SMP method
(Nt = 500, n = 10) to calculate Equation (18). The displacement error of m2 is shown in Figure 17.
Obviously, the improved SMP method effectively reduces the error, and the amount of calculation is
also greatly reduced. It can be seen that the improved SMP is also applicable in complex systems.

Figure 15. Displacement for m1.
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Figure 16. Displacement for m2.

Figure 17. Errors of the two SMP methods (SMP and improved SMP) of m2.
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5. Conclusions

In this paper, an improved SMP is proposed based on the fractional differential equation of the
Grünwald–Letnikov definition, and the single-degree-of-freedom fractional-damped free vibration,
forced vibration differential equations and vehicle suspension two-degree-of-freedom vibration
reduction model are used as examples to verify its validity and reliability. If the traditional SMP is
adopted, than the free vibration will not be attributed to the equilibrium position, and the improved
SMP eliminates this error by adjusting the step size and taking points to participate in the calculation
in the full time domain. Since free vibration has the characteristics of amplitude attenuation, it can be
clearly judged whether to return to the equilibrium position in error analysis. The long-time forced
vibration example shows the obvious superiority of the algorithm, which uses less calculation and
greatly reduces the error. An example of a two-degree-of-freedom vibration reduction model of a
vehicle suspension shows the usability of the improved SMP in the analysis of complex structures.
The step size is gradually enlarged, so that the amount of calculation is greatly reduced, and the
calculation cost is saved while maintaining the accuracy. To ensure the accuracy and reduce the amount
of calculation at the same time, is the purpose of the improved method. It is also the purpose of
improving the SMP, using basic small steps to ensure calculation accuracy and gradually enlarging the
step size to reduce the amount of calculation. In summary, the improved numerical method based on
the SMP is effective and feasible.

Author Contributions: Conceptualization, R.M.; Data curation, R.M.; Formal analysis, R.M.; Funding acquisition,
J.H.; Investigation, R.M.; Methodology, R.M.; Project administration, J.H.; Resources, J.H.; Software, R.M.;
Supervision, J.H.; Validation, X.Y.; Writing—original draft, R.M.; Writing—review & editing, X.Y. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China [Grant No. 11472133].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miller, K.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York,
NY, USA, 1993.

2. Ichise, M.; Nagayanagi, Y.; Koijima, T. An analog simulation of non-integer order transfer functions for
analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 1971, 33, 253–265. [CrossRef]

3. Sun, H.H.; Onaral, B.; Tsao, Y. Application of the positive reality principle to metal electrode linear polarization
phenomena. IEEE Trans. Biomed. Eng. BME 1984, 31, 664–674. [CrossRef]

4. Sun, H.H.; Abdelwahab, A.A.; Onaral, B. Linear approximation of transfer function with a pole of fractional
power. IEEE Trans. Automat. Control 1984, 29, 441–444. [CrossRef]

5. Magin, R.L. Fractional Calculus in Bioengineering: Part 1. Crit. Rev. Biomed. Eng. 2004, 32, 1–104. [CrossRef]
[PubMed]

6. Magin, R.L. Fractional Calculus in Bioengineering: Part 2. Crit. Rev. Biomed. Eng. 2004, 32, 105–193.
[CrossRef] [PubMed]

7. Magin, R.L. Fractional Calculus in Bioengineering: Part 3. Crit. Rev. Biomed. Eng. 2004, 32, 194–377.
8. Hartley, T.T.; Lorenzo, C.F.; Kammar, H.K. Chaos in a fractional order Chua’s system. IEEE Trans. Circuits

Syst. I Fundam. Theory Appl. 1995, 42, 485–490. [CrossRef]
9. Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio fractional derivative to solve the fractional model of energy

supply-demand system. Math. Model. Eng. Probl. 2020, 7, 359–367. [CrossRef]
10. Bagley, R.L.; Torvik, P.J. Fractional calculus in the transient analysis of viscoelastically damped structures.

AIAA J. 1985, 23, 918–1025. [CrossRef]
11. Rossikhin, Y.A.; Shitikova, M.V. Application of fractional calculus for dynamic problems of solid mechanics:

Novel trends and recent results. Appl. Mech. Rev. 2010, 63, 10801-1–10801-51. [CrossRef]
12. Podlubny, I. Fractional Differential Equations; Academic: San Diego, CA, USA, 1999.
13. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College: London, UK, 2010.
14. Baleanu, D.; Machado, J.A.T.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2012.

http://dx.doi.org/10.1016/S0022-0728(71)80115-8
http://dx.doi.org/10.1109/TBME.1984.325317
http://dx.doi.org/10.1109/TAC.1984.1103551
http://dx.doi.org/10.1615/CritRevBiomedEng.v32.10
http://www.ncbi.nlm.nih.gov/pubmed/15248549
http://dx.doi.org/10.1615/CritRevBiomedEng.v32.i2.10
http://www.ncbi.nlm.nih.gov/pubmed/15373276
http://dx.doi.org/10.1109/81.404062
http://dx.doi.org/10.18280/mmep.070305
http://dx.doi.org/10.2514/3.9007
http://dx.doi.org/10.1115/1.4000563


Appl. Sci. 2020, 10, 7566 16 of 16

15. Atanackovic, T.M.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics;
Wiley: New York, NY, USA, 2014.

16. Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51,
299–307. [CrossRef]

17. Tan, W.; Xu, M. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model.
Acta Mech. Sin. 2002, 18, 342–349.

18. Schiessel, H.; Metzler, R.; Blumen, A.; Nonnenmacher, T.F. Generalized viscoelastic models: Their fractional
equations with solutions. J. Phys. A 1995, 28, 6567–6584. [CrossRef]

19. Friedrich, C.; Braun, H. Linear viscoelastic behaviour of complex polymeric materials: A fractional mode
representation. Colloid Polym. Sci. 1994, 272, 1536–1546. [CrossRef]

20. Rossikhin, Y.A.; Shitikova, M.V. Application of fractional derivatives to the analysis of damped vibrations of
viscoelastic single mass systems. ACTA Mech. 1997, 120, 109–125. [CrossRef]

21. Spanos, P.D.; Zeldin, B.A. Random vibration of systems with frequency-dependent parameters or fractional
derivatives. J. Eng. Mech. 1997, 123, 290–292. [CrossRef]

22. Rossikhin, Y.A.; Shitikova, M.V. Analysis of damped vibrations of linear viscoelastic plates with damping
modeled with fractional derivatives. Signal Process. 2006, 86, 2703–2711. [CrossRef]

23. Nerantzaki, M.S.; Babouskos, N.G. Vibrations of inhomogeneous anisotropic viscoelastic bodies described
with fractional derivative models. Eng. Anal. Bound. Elem. 2012, 36, 1894–1907. [CrossRef]

24. Cai, W.; Chen, W.; Xu, W.X. Fractional modeling of Pasternak-type viscoelastic foundation. Mech. Time
Depend. Mater. 2017, 21, 119–131. [CrossRef]

25. Di Paola, M.; Heuter, R.; Pirrotta, A. Fractional viscoelastic Euler Bernoulli beam. Int. J. Solids Struct. 2013,
50, 3505–3510. [CrossRef]

26. Di Lorenzo, S.; di Paola, M.; Pinnola, F.P.; Pirrotta, A. Stochastic response of fractionally damped beams.
Probab. Eng. Mech. 2013, 35, 37–43. [CrossRef]

27. Rossikhin, Y.A.; Shitikova, M.V. A new method for solving dynamic problems of fractional derivative
viscoelasticity. Int. J. Eng. Sci. 2001, 39, 149–176. [CrossRef]

28. Koh, C.G.; Kelly, L.M. Application of fractional derivatives to seismic analysis of base isolated models.
Earthq. Eng. Struct. Dyn. 1990, 19, 229–241. [CrossRef]

29. Rossikhin, Y.A.; Shitikova, M.V. Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical
system with damping modelled by a fractional derivative. J. Eng. Math. 2000, 37, 343–362. [CrossRef]

30. Spanos, P.D.; Malara, G. Nonlinear random vibrations of beams with fractional derivative elements.
J. Eng. Mech. 2014, 140, 04014069. [CrossRef]

31. Guo, Z.J.; Zhang, W. Hard-spring bistability and effect of system parameters in a two-degree-of-freedom
vibration system with damping modeled by a fractional derivative. Int. J. Bifurc. Chaos 2016, 26, 1650078.
[CrossRef]

32. Jiang, J.F.; Cao, D.Q.; Chen, H.T.; Zhao, K. The vibration transmissibility of a single degree of freedom
oscillator with nonlinear fractional order damping. Int. J. Mech. Sci. 2017, 48, 2379–2393. [CrossRef]

33. Lewandowski, R.; Wielentejczyk, P. Nonlinear vibration of viscoelastic beams described using fractional
order derivatives. J. Sound Vib. 2017, 399, 228–243. [CrossRef]

34. Abdelouahab, M.S.; Hamri, N.E. The Gr”unwald-Letnikov fractional-order derivative with fixed memory
length. Mediterr. J. Math. 2016, 13, 557–572. [CrossRef]

35. Abedini, M.; Nojoumian, M.A.; Salarieh, H.; Meghdari, A. Model reference adaptive control in fractional
order systems using discrete-time approximation methods. Commun. Nonlinear Sci. Numer. Simul. 2015, 25,
27–40. [CrossRef]

36. Wei, Y.; Chen, Y.; Cheng, S.; Wang, Y. A note on short memory principle of fractional calculus. Fract. Calc.
Appl. Anal. 2017, 20, 1382. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1115/1.3167616
http://dx.doi.org/10.1088/0305-4470/28/23/012
http://dx.doi.org/10.1007/BF00664721
http://dx.doi.org/10.1007/BF01174319
http://dx.doi.org/10.1061/(ASCE)0733-9399(1997)123:3(290)
http://dx.doi.org/10.1016/j.sigpro.2006.02.016
http://dx.doi.org/10.1016/j.enganabound.2012.07.003
http://dx.doi.org/10.1007/s11043-016-9321-0
http://dx.doi.org/10.1016/j.ijsolstr.2013.06.010
http://dx.doi.org/10.1016/j.probengmech.2013.09.008
http://dx.doi.org/10.1016/S0020-7225(00)00025-2
http://dx.doi.org/10.1002/eqe.4290190207
http://dx.doi.org/10.1023/A:1004689114479
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000778
http://dx.doi.org/10.1142/S0218127416500784
http://dx.doi.org/10.1080/00207721.2017.1316530
http://dx.doi.org/10.1016/j.jsv.2017.03.032
http://dx.doi.org/10.1007/s00009-015-0525-3
http://dx.doi.org/10.1016/j.cnsns.2014.11.012
http://dx.doi.org/10.1515/fca-2017-0073
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Memory Effect of Fractional Differential 
	Improved SMP 
	Examples Analysis 
	Free Vibration 
	Forced Vibration 
	Two-Degree-of-Freedom Vibration Reduction Model of Vehicle Suspension 

	Conclusions 
	References

