Mirrors for Space Telescopes: Degradation Issues
Abstract
:1. Mirror Technology
2. Degradation of Materials in Space—Stability Issues on Mirrors
2.1. Atomic Oxygen
2.2. Thermal Processes
2.3. Ultraviolet Radiation
2.4. Outgassing and Cross-Contamination
2.5. Charged Particles
2.6. Dust and Space Debris
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Postman, M. Advanced Technology Large-Aperture Space Telescope: Science drivers and technology developments. Opt. Eng. 2012, 51, 011007. [Google Scholar] [CrossRef]
- Trumper, I.; Hallibert, P.; Arenberg, J.W.; Kunieda, H.; Guyon, O.; Stahl, H.P.; Kim, D.W. Optics technology for large-aperture space telescopes: From fabrication to final acceptance tests. Adv. Opt. Photonics 2018, 10, 644. [Google Scholar] [CrossRef]
- Feinberg, L. Space telescope design considerations. Opt. Eng. 2012, 51, 011006. [Google Scholar] [CrossRef]
- Gaier, T.; Mikhail, R.; Cavaco, J.; Vayda, J.; Steeves, J.; Wallace, J.K.; Redding, D.; Lawrence, C.; Bartman, R. Active mirrors for future space telescopes. In Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Austin, TX, USA, 10–15 June 2018; Geyl, R., Navarro, R., Eds.; SPIE: Bellingham, WA, USA, 2018; 38p. [Google Scholar]
- Bolcar, M.R.; Balasubramanian, K.; Clampin, M.; Crooke, J.; Feinberg, L.; Postman, M.; Quijada, M.; Rauscher, B.; Redding, D.; Rioux, N.; et al. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor. In UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VII, Proceedings of the SPIE Conference Proceeding, San Diego, CA, USA, 9–13 August 2015; MacEwen, H.A., Breckinridge, J.B., Eds.; SPIE: Bellingham, WA, USA, 2015; p. 960209. [Google Scholar]
- Bolcar, M.R.; Balasubramanian, K.; Crooke, J.; Feinberg, L.; Quijada, M.; Rauscher, B.J.; Redding, D.; Rioux, N.; Shaklan, S.; Stahl, H.P.; et al. Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope. J. Astron. Telesc. Instrum. Syst. 2016, 2, 041209. [Google Scholar] [CrossRef] [PubMed]
- Philip Stahl, H. Advanced ultraviolet, optical, and infrared mirror technology development for very large space telescopes. J. Astron. Telesc. Instrum. Syst. 2020, 6, 1. [Google Scholar] [CrossRef]
- Villalba, V.; Kuiper, H.; Gill, E. Review on thermal and mechanical challenges in the development of deployable space optics. J. Astron. Telesc. Instrum. Syst. 2020, 6, 1. [Google Scholar] [CrossRef]
- Stahl, H.P. Mirror technology roadmap for optical/IR/FIR space telescopes. In Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Orlando, FL, USA, 24–31 May 2006; Mather, J.C., MacEwen, H.A., De Graauw, M.W.M., Eds.; SPIE: Bellingham, WA, USA, 2006; p. 626504. [Google Scholar]
- Lewis, W.C. Space Telescope Mirror Substrate. In Space Optics II, Proc. SPIE 0183, Space Optics II, (27 September 1979); International Society for Optics and Photonics: Bellingham, WA, USA, 1979; pp. 114–119. [Google Scholar]
- Zhang, W.W.; Chan, K.-W.; Content, D.A.; Lehan, J.P.; Petre, R.; Saha, T.T.; Gubarev, M.; Jones, W.D.; O’Dell, S.L. Development of lightweight X-ray mirrors for the Constellation-X mission. In Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Orlando, FL, USA, 24–31 May 2006; Turner, M.J.L., Hasinger, G., Eds.; SPIE: Bellingham, WA, USA, 2006; p. 62661V. [Google Scholar]
- Parsonage, T.B. JWST beryllium telescope: Material and substrate fabrication. In Optical Fabrication, Metrology, and Material Advancements for Telescopes, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Glasgow, UK, 21–25 June 2004; Atad-Ettedgui, E., Dierickx, P., Eds.; SPIE: Bellingham, WA, USA, 2004; 39p. [Google Scholar]
- Witkin, D.B.; Palusinski, I.A. Material testing of silicon carbide mirrors. In Optical Materials and Structures Technologies IV, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 2–6 August 2009; Robichaud, J.L., Goodman, W.A., Eds.; SPIE: Bellingham, WA, USA, 2009; p. 742509. [Google Scholar]
- Baiocchi, D.; Stahl, H.P. Enabling Future Space Telescopes: Mirror Technology Review and Development Roadmap. In Astro2010—The Astronomy and Astrophysics Decadal Survey; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2009; Volume 2010, 23p. [Google Scholar]
- Pilbratt, G.L.; Riedinger, J.R.; Passvogel, T.; Crone, G.; Doyle, D.; Gageur, U.; Heras, A.M.; Jewell, C.; Metcalfe, L.; Ott, S.; et al. Herschel Space Observatory. Astron. Astrophys. 2010, 518, L1. [Google Scholar] [CrossRef] [Green Version]
- Korhonen, T.; Keinanen, P.; Pasanen, M.; Sillanpaa, A. Polishing and testing of the 3.5 m SiC M1 mirror of the Herschel space observatory of ESA. In Optical Fabrication, Testing, and Metrology III, Proceedings of the Optical Systems Design, Glasgow, UK, 2–5 September 2008; Duparré, A., Geyl, R., Eds.; SPIE: Bellingham, WA, USA, 2008; p. 710218. [Google Scholar]
- Steeves, J.; Laslandes, M.; Pellegrino, S.; Redding, D.; Bradford, S.C.; Wallace, J.K.; Barbee, T. Design, fabrication and testing of active carbon shell mirrors for space telescope applications. In Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Montréal, QC, CA, 22–27 June 2014; Navarro, R., Cunningham, C.R., Barto, A.A., Eds.; SPIE: Bellingham, WA, USA, 2014; p. 915105. [Google Scholar]
- Bavdaz, M.; Collon, M.; Beijersbergen, M.; Wallace, K.; Wille, E. X-ray pore optics technologies and their application in space telescopes. X-Ray Opt. Instrum. 2010, 2010, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Piegari, A.; Bulir, J.; Krasilnikova Sytchkova, A. Variable narrow-band transmission filters for spectrometry from space 2 Fabrication process. Appl. Opt. 2008, 47, C151. [Google Scholar] [CrossRef]
- Rodríguez-de Marcos, L.; Aznárez, J.A.; Méndez, J.A.; Larruquert, J.I.; Vidal-Dasilva, M.; Malvezzi, A.M.; Giglia, A.; Capobianco, G.; Massone, G.; Fineschi, S.; et al. Advances in far-ultraviolet reflective and transmissive coatings for space applications. In Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Edinburgh, UK, 26 June–1 July 2016; Navarro, R., Burge, J.H., Eds.; SPIE: Bellingham, WA, USA, 2016; p. 99122E. [Google Scholar]
- Zuccon, S.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.; Fineschi, S.; Windt, D. Multilayer coatings for multiband spectral observations. In International Conference on Space Optics—ICSO 2006, Proceedings of the International Conference on Space Optics 2006, Noordwijk, The Netherlands, 27–30 June 2006; Armandillo, E., Costeraste, J., Karafolas, N., Eds.; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Benschop, J.; Banine, V.; Lok, S.; Loopstra, E. Extreme ultraviolet lithography: Status and prospects. J. Vac. Sci. Technol. B 2008, 26, 2204–2207. [Google Scholar] [CrossRef]
- Van der Velden, M.H.L.; Brok, W.J.M.; Van der Mullen, J.J.A.M.; Banine, V. Kinetic simulation of an extreme ultraviolet radiation driven plasma near a multilayer mirror. J. Appl. Phys. 2006, 100, 73303. [Google Scholar] [CrossRef] [Green Version]
- Beckers, J.; Van de Ven, T.; Van der Horst, R.; Astakhov, D.; Banine, V. EUV-Induced Plasma: A Peculiar Phenomenon of a Modern Lithographic Technology. Appl. Sci. 2019, 9, 2827. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.; Lopaev, D.; Lee, C.J.; Zoethout, E.; Medvedev, V.; Yakushev, O.; Bijkerk, F. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source. Appl. Surf. Sci. 2015, 353, 708–713. [Google Scholar] [CrossRef] [Green Version]
- Koster, N.; Mertens, B.; Jansen, R.; Van De Runstraat, A.; Stietz, F.; Wedowski, M.; Meiling, H.; Klein, R.; Gottwald, A.; Scholze, F.; et al. Molecular contamination mitigation in EUVL by environmental control. Microelectron. Eng. 2002, 61, 65–76. [Google Scholar] [CrossRef]
- Van den Bos, R.A.J.M.; Lee, C.J.; Benschop, J.P.H.; Bijkerk, F. Blister formation in Mo/Si multilayered structures induced by hydrogen ions. J. Phys. D. Appl. Phys. 2017, 50, 265302. [Google Scholar] [CrossRef]
- Van den Bos, R.A.J.M.; Reshetniak, V.; Lee, C.J.; Benschop, J.; Bijkerk, F. A model for pressurized hydrogen induced thin film blisters. J. Appl. Phys. 2016, 120, 235304. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.; Lopaev, D.; Rachimova, T.; Kovalev, A.; Vasil’Eva, A.; Lee, C.J.; Krivtsun, V.M.; Yakushev, O.; Bijkerk, F. Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas. J. Phys. D Appl. Phys. 2014, 47, 65205. [Google Scholar] [CrossRef] [Green Version]
- De Groh, K.K.; Banks, B.A.; Miller, S.K.R.; Dever, J.A. Degradation of Spacecraft Materials. In Handbook of Environmental Degradation of Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 601–645. [Google Scholar]
- Lu, Y.; Shao, Q.; Yue, H.; Yang, F. A Review of the Space Environment Effects on Spacecraft in Different Orbits. IEEE Access 2019, 7, 93473–93488. [Google Scholar] [CrossRef]
- Tagliaferri, G.; Basso, S.; Borghi, G.; Burkert, W.; Citterio, O.; Civitani, M.; Conconi, P.; Cotroneo, V.; Freyberg, M.; Garoli, D.; et al. Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study. AIP Conf. Proc. 2009, 1126, 35–40. [Google Scholar]
- Garoli, D.; Boscolo Marchi, E.; Mattarello, V.; Bertoli, J.; Salmaso, G.; Kools, J.; Spiga, D.; Tagliaferri, G.; Pareschi, G. Enabling deposition of hard x-ray reflective coatings as an industrial manufacturing process. In EUV and X-Ray Optics: Synergy between Laboratory and Space, Proceedings of the SPIE Optics + Optoelectronics, Prague, Czech Republic, 20–23 April 2009; Hudec, R., Pina, L., Eds.; SPIE: Bellingham, WA, USA, 2009; p. 73600U. [Google Scholar]
- Gouzman, I.; Grossman, E.; Murat, M.; Noter, Y.; Saar, N.; Zilberman, G.; Minton, T.K.; Garton, D.J.; Buczala, D.; Brunsvold, A. A study of atomic oxygen interactions with protected silver surfaces. Eur. Sp. Agency Spec. Publ. ESA SP 2003, 2003, 487–492. [Google Scholar]
- Sheikh, D.A. Improved silver mirror coating for ground and space-based astronomy. In Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Edinburgh, UK, 26 June–1 July 2016; Navarro, R., Burge, J.H., Eds.; SPIE: Bellingham, WA, USA, 2016; Volume 9912, p. 991239. [Google Scholar]
- Heaney, J.B.; Kauder, L.R.; Freese, S.C.; Quijada, M.A. Preferred mirror coatings for UV, visible, and IR space optical instruments. In Earth Observing Systems XVII, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 12–16 August 2012; Butler, J.J., Xiong, X., Gu, X., Eds.; SPIE: Bellingham, WA, USA, 2012; p. 85100F. [Google Scholar]
- Folgner, K.A. Towards Understanding the Environmental Durability and Corrosion Behavior of Protected Silver Mirrors. Ph.D. Thesis, University of California, Los Angeles, CA, USA, 2019. [Google Scholar]
- Sheikh, D.A.; Connell, S.J.; Dummer, R.S. Durable silver coating for Kepler Space Telescope primary mirror. Space Telescopes and Instrumentation 2008: Optical, Infrared, and Millimeter. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Marseille, France, 23–28 June 2008; p. 70104E. [Google Scholar]
- Dooling, D.; Finckenor, M.M. Material Selection Guidelines to Limit Atomic Oxygen Effects on Spacecraft Surfaces; Marshall Space Flight Center: Huntsville, AL, USA, 1999. [Google Scholar]
- Banks, B.; Miller, S.; De Groh, K. Low Earth Orbital Atomic Oxygen Interactions with Materials. In Proceedings of the 2nd International Energy Conversion Engineering Conference, Providence, RI, USA, 16–19 August 2004; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004. [Google Scholar]
- Banks, B.A.; Stueber, T.J.; Norris, M.J. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers. In Protection of Space Materials from the Space Environment. Space Technology Proceedings; Springer: Berlin, Germany, 2001; pp. 1–14. [Google Scholar]
- Koontz, S.L.; Leger, L.J.; Rickman, S.L.; Cross, J.B.; Hakes, C.L.; Bui, D.T. Evaluation of Oxygen Interactions with Materials III—Mission and Induced Environments; Los Alamos National Lab.: Los Alamos, NM, USA, 1994.
- Duan, W.; Liu, B.; Li, D.; Yu, D.; Liu, D. Study on the Polarization Contrast of Polarization Modulated Mirror Affected by Simulated Space Atomic Oxygen. In Proceedings of the Optical Interference Coatings Conference (OIC), Santa Ana Pueblo, NM, USA, 2–7 June 2019; OSA: Washington, DC, USA, 2019. [Google Scholar]
- Peters, P.N.; Linton, R.C.; Miller, E.R. Results of apparent atomic oxygen reactions on Ag, C, and Os exposed during the Shuttle STS-4 orbits. Geophys. Res. Lett. 1983, 10, 569–571. [Google Scholar] [CrossRef]
- Peters, P.N.; Gregory, J.C.; Swann, J.T. Effects on optical systems from interactions with oxygen atoms in low earth orbits. Appl. Opt. 1986, 25, 1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemphill, R.; Hurwitz, M.; Pelizzo, M.G. Osmium atomic-oxygen protection by an iridium overcoat for increased extreme-ultraviolet grating efficiency. Appl. Opt. 2003, 42, 5149. [Google Scholar] [CrossRef] [PubMed]
- Peters, P.N.; Zwiener, J.M.; Gregory, J.C.; Raikar, G.N.; Christl, L.C.; Wilkes, D.R. Changes in chemical and optical properties of thin film metal mirrors on LDEF. In Third Post-Retrieval Symposium, Proceedings of the LDEF: 69 Months in Space, Washington, DC, USA, 8–12 November 1993; NASA Langley Research Center: Hampton, VA, USA, 1995; pp. 703–725. [Google Scholar]
- Hadaway, J.B.; Ahmad, A.; Pezzaniti, J.L.; Chipman, R.A.; Wilkes, D.R.; Hummer, L.L.; Crandall, D.G.; Bennett, J.M. Real-time total integrated scattering measurements on the Mir spacecraft to evaluate sample degradation in space. Appl. Opt. 2001, 40, 2755. [Google Scholar] [CrossRef] [PubMed]
- Gull, T.R.; Herzig, H.; Osantowski, J.F.; Toft, A.R. Low earth orbit environmental effects on osmium and related optical thin-film coatings. Appl. Opt. 1985, 24, 2660. [Google Scholar] [CrossRef]
- Herzig, H.; Toft, A.R.; Fleetwood, C.M. Long-duration orbital effects on optical coating materials. Appl. Opt. 1993, 32, 1798. [Google Scholar] [CrossRef]
- Raikar, G.N.; Gregory, J.C.; Partlow, W.D.; Herzig, H.; Choyke, W.J. Surface characterization of SiC mirrors exposed to fast atomic oxygen. Surf. Interface Anal. 1995, 23, 77–82. [Google Scholar] [CrossRef]
- Mileti, S.; Coluzzi, P.; Marchetti, M. Degradation of silicon carbide reflective surfaces in the LEO environment. AIP Conf. Proc. 2009, 1087, 67–74. [Google Scholar]
- Garoli, D.; Monaco, G.; Frassetto, F.; Pelizzo, M.G.; Nicolosi, P.; Armelao, L.; Mattarello, V.; Rigato, V. Thin film and multilayer coating development for the extreme ultraviolet spectral region. Radiat. Phys. Chem. 2006, 75, 1966–1971. [Google Scholar] [CrossRef]
- Garoli, D.; Frassetto, F.; Monaco, G.; Nicolosi, P.; Pelizzo, M.-G.; Rigato, F.; Rigato, V.; Giglia, A.; Nannarone, S. Reflectance measurements and optical constants in the extreme ultraviolet-vacuum ultraviolet regions for SiC with a different C/Si ratio. Appl. Opt. 2006, 45, 5642–5650. [Google Scholar] [CrossRef]
- Keski-Kuha, R.A.M.; Blumenstock, G.M.; Fleetwood, C.M.; Schmitt, D.-R. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings. Appl. Opt. 1998, 37, 8038. [Google Scholar] [CrossRef] [PubMed]
- Packirisamy, S.; Schwam, D.; Litt, M.H. Atomic oxygen resistant coatings for low earth orbit space structures. J. Mater. Sci. 1995, 30, 308–320. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Qian, Y.; Qi, H.; Li, J.; Sun, J. Mechanically Robust Atomic Oxygen-Resistant Coatings Capable of Autonomously Healing Damage in Low Earth Orbit Space Environment. Adv. Mater. 2018, 30, 1803854. [Google Scholar] [CrossRef]
- Delfini, A.; Vricella, A.; Morles, R.B.; Pastore, R.; Micheli, D.; Gugliermetti, F.; Marchetti, M. CVD nano-coating of carbon composites for space materials atomic oxygen shielding. Procedia Struct. Integr. 2017, 3, 208–216. [Google Scholar] [CrossRef]
- Bouquet, F.L.; Helms, R.G.; Maag, C.R. Recent advances in long-lived mirrors for terrestrial and space applications. Sol. Energy Mater. 1987, 16, 423–433. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Kim, Y.J.; Kim, S.-Y.; Lee, J.H.; Kim, K.; Ko, J.H.; Lee, J.W.; Lee, B.H.; Song, Y.M. Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials. Opt. Mat. Express 2019, 9, 4178–4186. [Google Scholar] [CrossRef]
- Burton, W.M. Removable volatile protective coatings for aluminised mirrors used in far-ultraviolet space astronomy. J. Phys. D Appl. Phys. 1983, 16, L129–L132. [Google Scholar] [CrossRef]
- Edmends, J.; Maldé, C.; Corrigan, S. Measurements of the far ultraviolet reflectivity of evaporated aluminum films under exposure to O2, H2O, CO and CO2. Vacuum 1990, 40, 471–475. [Google Scholar] [CrossRef]
- Larruquert, J.I.; Méndez, J.A.; Aznárez, J.A. Far-UV reflectance of UHV-prepared Al films and its degradation after exposure to O2. Appl. Opt. 1994, 33, 3518. [Google Scholar] [CrossRef]
- Larruquert, J.I.; Méndez, J.; Aznárez, J. Degradation of far ultraviolet reflectance of aluminum films exposed to atomic oxygen. In-orbit coating application. Opt. Commun. 1996, 124, 208–215. [Google Scholar]
- Larruquert, J.I.; Méndez, J.A.; Aznárez, J.A. Life prolongation of far ultraviolet reflecting aluminum coatings by periodic recoating of the oxidized surface. Opt. Commun. 1997, 135, 60–64. [Google Scholar] [CrossRef]
- Hass, G.; Hunter, W.R. Laboratory Experiments to Study Surface Contamination and Degradation of Optical Coatings and Materials in Simulated Space Environments. Appl. Opt. 1970, 9, 2101. [Google Scholar] [CrossRef]
- Ignatiev, A.; Chu, C.W. A proposal for epitaxial thin film growth in outer space. Metall. Trans. A 1988, 19, 2639–2643. [Google Scholar] [CrossRef]
- Naumann, R.J. Prospects for a contamination-free ultravacuum facility in low-Earth orbit. J. Vac. Sci. Technol. A Vac. Surf. Film. 1989, 7, 90–99. [Google Scholar] [CrossRef]
- Quijada, M.A.; Sheikh, D.A.; Del Hoyo, J.Z.G.; Richardson, J.G. ZERODUR(R) substrates for application of high-temperature protected-aluminum far-ultraviolet coatings. In Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems II, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 11–15 August 2019; SPIE: Bellingham, WA, USA, 2019; p. 25. [Google Scholar]
- Keski-Kuha, R.A.; Bowers, C.W.; Quijada, M.A.; Heaney, J.B.; Gallagher, B.; McKay, A.; Stevenson, I. James Webb Space Telescope optical telescope element mirror coatings. In Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Amsterdam, The Netherlands, 1–6 July 2012; Clampin, M.C., Fazio, G.G., MacEwen, H.A., Oschmann, J.M., Eds.; SPIE: Bellingham, WA, USA, 2012; p. 84422J. [Google Scholar]
- Banyal, R.K.; Ravindra, B. Thermal characteristics of a classical solar telescope primary mirror. N. Astron. 2011, 16, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Shi, H.L.; Chen, Z.P. Study on Thermal Analysis of Main Mirror in Space Solar Telescope. Adv. Mater. Res. 2011, 300–304, 328–330. [Google Scholar]
- Onaka, T.; Kaneda, H.; Kawada, M.; Enya, K.; Nakagawa, T. Cryogenic silicon carbide mirrors for infrared astronomical telescopes: Lessons learnt from AKARI for SPICA. In Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 25–29 August 2013; Robichaud, J.L., Krödel, M., Goodman, W.A., Eds.; SPIE: Bellingham, WA, USA, 2013; p. 88370K. [Google Scholar]
- Middelmann, T.; Walkov, A.; Bartl, G.; Schödel, R. Thermal expansion coefficient of single-crystal silicon from 7 K to 293 K. Phys. Rev. B 2015, 92, 174113. [Google Scholar] [CrossRef] [Green Version]
- Eng, R.; Arnold, W.R.; Baker, M.A.; Bevan, R.M.; Burdick, G.; Effinger, M.R.; Gaddy, D.E.; Goode, B.K.; Hanson, C.; Hogue, W.D.; et al. Cryogenic optical performance of a lightweighted mirror assembly for future space astronomical telescopes: Correlating optical test results and thermal optical model. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 25–29 August 2013; Robichaud, J.L., Krödel, M., Goodman, W.A., Eds.; SPIE: Bellingham, WA, USA, 2013; p. 88370B. [Google Scholar]
- Poletto, L.; Naletto, G.; Tondello, G.; Patelli, A.; Rigato, V.; Salmaso, G.; Silvestrini, D.; Larruquert, J.I.; Mendez, J.A. Grazing-Incidence Reflectivity of Si-Au Coatings for Optics with High Thermal Load; International Society for Optics and Photonics: Bellingham, WA, USA, 2004; p. 344. [Google Scholar]
- Gutiérrez-Luna, N.; Perea-Abarca, B.; Espinosa-Yáñez, L.; Honrado-Benítez, C.; De Lis, T.; Rodríguez-de Marcos, L.V.; Aznárez, J.A.; Larruquert, J.I. Temperature Dependence of AlF3 Protection on Far-UV Al Mirrors. Coatings 2019, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Scurti, F.; Mcgarrahan, J.; Schwartzt, J. Effects of metallic coatings on the thermal sensitivity of optical fiber sensors at cryogenic temperatures. Opt. Mat. Express 2017, 7, 1754–1766. [Google Scholar] [CrossRef]
- Wang, F.; Li, S.; Zhang, Z.; Wang, Z.; Zhou, H.; Huo, T. Effect of MgF2 deposition temperature on Al mirrors in vacuum ultraviolet. In Proceedings of the Tenth International Conference on Thin Film Physics and Applications (TFPA 2019), Qingdao, China, 19–22 May 2019; Chu, J., Shao, J., Eds.; SPIE: Bellingham, WA, USA, 2019; p. 42. [Google Scholar]
- Heaney, J.B.; Kauder, L.R.; Bradley, S.E.; Neuberger, D.E. Mirror Degradation in Orbit due to Space Radiation Exposure; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; p. 339. [Google Scholar]
- Fuqua, P.D.; Morgan, B.A.; Adams, P.M.; Meshishnek, M.J. Optical Darkening During Space Environmental Effects Testing-Contaminant Film Analyses; The Aerospace Corporation: El Segundo, CA, USA, 2004. [Google Scholar]
- Heaney, J.B.; Kauder, L.R.; Bradley, S.E.; Neuberger, D.E. Mirror degradation in orbit due to space radiation exposure. Earth Obs. Syst. V 2000, 4135, 339. [Google Scholar]
- Dever, J.; Pietromica, A.; Stueber, T.; Sechkar, E.; Messer, R. Simulated space vacuum ultraviolet (VUV) exposure testing for polymer films. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit; Reno, NV, USA, 8–11 January 2001; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001. [Google Scholar]
- Heltzel, S.; Semprimoschnig, C.O.A.; Van Eesbeek, M.R.J. Environmental Testing of Thermal Control Materials at Elevated Temperature and Intense Ultraviolet Radiation. J. Spacecr. Rockets 2009, 46, 248–254. [Google Scholar] [CrossRef]
- Cesul, B.T.; Mall, S.; Matson, L. Optical Response of Metakaolin after Ultraviolet and High Energy Electron Exposure. J. Mater. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Hass, G.; Heaney, J.B.; Hunter, W.R.; Angel, D.W. Effect of UV irradiation on evaporated ZnS films. Appl. Opt. 1980, 19, 2480. [Google Scholar] [CrossRef] [PubMed]
- Fuqua, P.D.; Barrie, J.D.; Meshishnek, M.J.; Ciofalo, M.R.; Chu, C.T.; Chaney, J.A.; Moision, R.M. On-orbit degradation of silver mirrors exposed to ultraviolet radiation. Opt. InfoBase Conf. Pap. 2013, 2011–2013. [Google Scholar]
- Kerr, G.D.; Williams, M.W.; Birkhoff, R.D.; Painter, L.R. Optical Properties of Some Silicone Diffusion-Pump Oils in the Vacuum Ultraviolet—Using an Open-Dish Technique. J. Appl. Phys. 1971, 42, 4258–4261. [Google Scholar] [CrossRef]
- Muscari, J.A. Absorption Spectra of Typical Space Materials in the Vacuum Ultraviolet; International Society for Optics and Photonics: Bellingham, WA, USA, 1981; pp. 195–200. [Google Scholar]
- Osantowski, J.F. Contamination Sensitivity of Typical Mirror Coatingsa Parametric Study; International Society for Optics and Photonics: Bellingham, WA, USA, 1983; pp. 80–87. [Google Scholar]
- Welsh, B.Y.; Jelinsky, S. The Effect of Out-Gassing from Commonly Used Spacecraft/Space Instrument Materials on the UV-Visible-IR Reflectivity of Optical Surfaces; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; p. 58970B. [Google Scholar]
- Meier, S.R.; Tveekrem, J.L.; Keski-Kuha, R.A.M. A far-ultraviolet contamination-irradiation facility for in situ reflectance measurements. Rev. Sci. Instrum. 1998, 69, 3642–3644. [Google Scholar] [CrossRef]
- Canfield, L.R.; Hass, G.; Waylonis, J.E. Further Studies on MgF_2-Overcoated Aluminum Mirrors with Highest Reflectance in the Vacuum Ultraviolet. Appl. Opt. 1966, 5, 45. [Google Scholar] [CrossRef]
- Tveekrem, J.L.; Leviton, D.B.; Fleetwood, C.M.; Feinberg, L.D. Contamination-induced degradation of optics exposed to the Hubble Space Telescope interior. Opt. Syst. Contam. V Stray Light Syst. Optim. 1996, 2864, 246–257. [Google Scholar]
- Heaney, J.B.; Herzig, H.; Osantowski, J.F. Auger spectroscopic examination of MgF_2-coated Al mirrors before and after uv irradiation. Appl. Opt. 1977, 16, 1886. [Google Scholar] [CrossRef]
- Quijada, M.A.; Henry, R.M.; Madison, T.; Boucarut, R.; Hagopian, J.G. Post-Flight Reflectance of COSTAR and WF/PC 2 Pickoff Mirrors upon Their Return from Space; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; p. 77392J. [Google Scholar]
- Osantowski, J.F.; Fleetwood, C.F. Contamination of Grazing Incidence EUV Mirrors—An Assessment; International Society for Optics and Photonics: Bellingham, WA, USA, 1988; p. 306. [Google Scholar]
- Mrowka, S.; Jelinsky, S.; Jelinsky, P.; Malina, R.F. Contamination Control Approach for The Extreme Ultraviolet Explorer Satellite Instrumentation; International Society for Optics and Photonics: Bellingham, WA, USA, 1987; p. 34. [Google Scholar]
- George, J.S.; Lave, K.A.; Wiedenbeck, M.E.; Binns, W.R.; Cummings, A.C.; Davis, A.J.; de Nolfo, G.A.; Hink, P.L.; Israel, M.H.; Leske, R.A.; et al. Elemental Composition And Energy Spectra Of Galactic Cosmic Rays During Solar Cycle 23. Astrophys. J. 2009, 698, 1666–1681. [Google Scholar] [CrossRef]
- McComas, D.J.; Bame, S.J.; Barraclough, B.L.; Feldman, W.C.; Funsten, H.O.; Gosling, J.T.; Riley, P.; Skoug, R.; Balogh, A.; Forsyth, R.; et al. Ulysses’ return to the slow solar wind. Geophys. Res. Lett. 1998, 25, 1–4. [Google Scholar] [CrossRef]
- Allen, C.S.; Giraudo, M.; Moratto, C.; Yamaguchi, N. Spaceflight environment. In Space Safety and Human Performance; Elsevier: Amsterdam, The Netherlands, 2018; pp. 87–138. [Google Scholar]
- Bourdarie, S.; Xapsos, M. The near-Earth space radiation environment. IEEE Trans. Nucl. Sci. 2008, 55, 1810–1832. [Google Scholar] [CrossRef] [Green Version]
- Heber, B.; Potgieter, M.S.; Ferreira, S.E.S.; Dalla, S.; Kunow, H.; Müller-Mellin, R.; Wibberenz, G.; Paizis, C.; Sarri, G.; Marsden, R.G.; et al. An overview of Jovian electrons during the distant Ulysses Jupiter flyby. Planet. Space Sci. 2007, 55, 1–11. [Google Scholar] [CrossRef]
- Naletto, G.; Boscolo, A.; Wyss, J.; Quaranta, A. Effects of proton irradiation on glass filter substrates for the Rosetta mission. Appl. Opt. 2003, 42, 3970. [Google Scholar] [CrossRef] [PubMed]
- Pelizzo, M.G.; Corso, A.J.; Tessarolo, E.; Zuppella, P.; Böttger, R.; Huebner, R.; Della Corte, V.; Palumbo, P.; Taglioni, G.; Preti, G.; et al. Optical Components in Harsh Space Environment; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; p. 99810G. [Google Scholar]
- Di Sarcina, I.; Grilli, M.L.; Menchini, F.; Piegari, A.; Scaglione, S.; Sytchkova, A.; Zola, D. Behavior of optical thin-film materials and coatings under proton and gamma irradiation. Appl. Opt. 2014, 53, A314. [Google Scholar] [CrossRef]
- Rousseau, A.D.; Windt, D.L.; Winter, B.; Harra, L.; Lamoureux, H.; Eriksson, F. Stability of EUV Multilayers to Long-Term Heating, and to Energetic Protons and Neutrons, for Extreme Solar Missions; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; p. 590004. [Google Scholar]
- Pelizzo, M.G.; Corso, A.J.; Tessarolo, E.; Böttger, R.; Hübner, R.; Napolitani, E.; Bazzan, M.; Rancan, M.; Armelao, L.; Jark, W.; et al. Morphological and Functional Modifications of Optical Thin Films for Space Applications Irradiated with Low-Energy Helium Ions. ACS Appl. Mater. Interfaces 2018, 10, 34781–34791. [Google Scholar] [CrossRef]
- Pellicori, S.F.; Martinez, C.L.; Hausgen, P.; Wilt, D. Development and testing of coatings for orbital space radiation environments. Appl. Opt. 2014, 53, A339. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Liu, H.; Wang, D.; Liu, S.-X. Degradation in optical reflectance of Al film mirror induced by proton irradiation. Thin Solid Films 2011, 519, 5046–5049. [Google Scholar] [CrossRef]
- Hai, L.; Qiang, W.; Shi-Yu, H.; Dan, Z. Proton radiation effects on optical constants of Al film reflector. Chinese Phys. 2006, 15, 1086–1089. [Google Scholar] [CrossRef]
- Qiang, W.; Hai, L.; Shi-Yu, H.; Zhen-duo, C.; Kleiman, J.I. Characterization of Surface Morphology Changes Induced by Proton Irradiation of an Aluminum Film Reflector; American Institute of Physics: College Park, MD, USA, 2009; pp. 657–664. [Google Scholar]
- Qiang, W.; Dan, W.; Shengxian, L.; Hai, L. The effects of 60 keV proton irradiation on aluminum film reflector. Spacecr. Environm. Eng. 2010, 27, 434–436. [Google Scholar]
- Gillette, R.B.; Kenyon, B.A. Proton-Induced Contaminant Film Effects on Ultraviolet Reflecting Mirrors. Appl. Opt. 1971, 10, 545. [Google Scholar] [CrossRef]
- Zuccon, S.; Napolitani, E.; Tessarolo, E.; Zuppella, P.; Corso, A.J.; Gerlin, F.; Nardello, M.; Pelizzo, M.G. Effects of helium ion bombardment on metallic gold and iridium thin films. Opt. Mater. Express 2015, 5, 176. [Google Scholar] [CrossRef]
- Wang, W.; Roth, J.; Lindig, S.; Wu, C. Blister formation of tungsten due to ion bombardment. J. Nucl. Mater. 2001, 299, 124–131. [Google Scholar] [CrossRef]
- Livengood, R.; Tan, S.; Greenzweig, Y.; Notte, J.; McVey, S. Subsurface damage from helium ions as a function of dose, beam energy, and dose rate. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2009, 27, 3244. [Google Scholar] [CrossRef]
- Raineri, V.; Coffa, S.; Szilágyi, E.; Gyulai, J.; Rimini, E. He-vacancy interactions in Si and their influence on bubble formation and evolution. Phys. Rev. B 2000, 61, 937–945. [Google Scholar] [CrossRef]
- Pelizzo, M.G.; Corso, A.J.; Zuppella, P.; Windt, D.L.; Mattei, G.; Nicolosi, P. Stability of extreme ultraviolet multilayer coatings to low energy proton bombardment. Opt. Express 2011, 19, 14838. [Google Scholar] [CrossRef]
- Nardello, M.; Zuppella, P.; Polito, V.; Corso, A.J.; Zuccon, S.; Pelizzo, M.G. Stability of EUV multilayer coatings to low energy alpha particles bombardment. Opt. Express 2013, 21, 28334. [Google Scholar] [CrossRef]
- Delmotte, F.; Meltchakov, E.; de Rossi, S.; Bridou, F.; Jérome, A.; Varnière, F.; Mercier, R.; Auchère, F.; Zhang, X.; Borgo, B.; et al. Development of Multilayer Coatings for Solar Orbiter EUV Imaging Telescopes; International Society for Optics and Photonics: Bellingham, WA, USA, 2013; p. 88620A. [Google Scholar]
- Kuznetsov, A.S.; Gleeson, M.A.; Bijkerk, F. Ion effects in hydrogen-induced blistering of Mo/Si multilayers. J. Appl. Phys. 2013, 114, 113507. [Google Scholar] [CrossRef]
- Kuznetsov, A.S.; Gleeson, M.A.; Bijkerk, F. Hydrogen-induced blistering of Mo/Si multilayers: Uptake and distribution. Thin Solid Films 2013, 545, 571–579. [Google Scholar] [CrossRef] [Green Version]
- Van de Ven, T.H.M.; Reefman, P.; De Meijere, C.A.; Van der Horst, R.M.; van Kampen, M.; Banine, V.Y.; Beckers, J. Ion energy distributions in highly transient EUV induced plasma in hydrogen. J. Appl. Phys. 2018, 123, 063301. [Google Scholar] [CrossRef]
- Douglas Caswell, R.; McBride, N.; Taylor, A. Olympus end of life anomaly—A perseid meteoroid impact event? Int. J. Impact Eng. 1995, 17, 139–150. [Google Scholar] [CrossRef]
- Limiting Future Collision Risk to Spacecraft: An Assessment of NASA’s Meteoroid and Orbital Debris Programs; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-21974-7.
- Jones, J. Meteoroid Engineering Model—Final Report; National Aeronautics and Space Administration: Washington, DC, USA, 2004.
- Drolshagen, G.; Carey, W.; McDonnell, J.A.; Stevenson, T.; Mandeville, J.; Berthoud, L. HST solar array impact survey: Revised damage laws and residue analysis. Adv. Sp. Res. 1997, 19, 239–251. [Google Scholar] [CrossRef]
- Young, R.P. Low-Scatter Mirror Degradation by Particle Contamination. Opt. Eng. 1976, 15, 156516. [Google Scholar] [CrossRef]
- Stübig, M.; Schäfer, G.; Ho, T.-M.; Srama, R.; GrunGrün, E. Laboratory simulation improvements for hypervelocity micrometeorite impacts with a new dust particle source. Planet. Space Sci. 2001, 49, 853–858. [Google Scholar] [CrossRef]
- Heaney, J.B.; Pearl, J.C.; Stuebig, M.A.; Wang, L.L.; He, C.C. Hypervelocity particle impact studies performed on a gold-coated beryllium substrate mirror. Opt. Infrared Millim. Sp. Telesc. 2004, 5487, 1100. [Google Scholar]
- Graham, G.A.; Kearsley, A.T.; Drolshagen, G.; McBride, N.; Green, S.F.; Wright, I.P. Microparticle impacts upon HST solar cells. Adv. Sp. Res. 2001, 28, 1341–1346. [Google Scholar] [CrossRef]
- See, T.; Allbrooks, M.; Atkinson, D.; Simon, C.Z.M. Meteoroid and Debris Impact Features Documented on The Long Duration Exposure Facility: A Preliminary Report; National Aeronautics and Space Administration: Washington, DC, USA, 1990.
- Hawkins, G.J.; Hunneman, R.; Seeley, J.S. Space Exposure of Infrared Filters and Materials on the NASA Long Duration Exposure Facility (LDEF); Space Expo: Noordwijk, The Netherlands, 1991. [Google Scholar]
- Whipple, F.L. Meteorites and space travel. Astron. J. 1947, 52, 131. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garoli, D.; Rodriguez De Marcos, L.V.; Larruquert, J.I.; Corso, A.J.; Proietti Zaccaria, R.; Pelizzo, M.G. Mirrors for Space Telescopes: Degradation Issues. Appl. Sci. 2020, 10, 7538. https://doi.org/10.3390/app10217538
Garoli D, Rodriguez De Marcos LV, Larruquert JI, Corso AJ, Proietti Zaccaria R, Pelizzo MG. Mirrors for Space Telescopes: Degradation Issues. Applied Sciences. 2020; 10(21):7538. https://doi.org/10.3390/app10217538
Chicago/Turabian StyleGaroli, Denis, Luis V. Rodriguez De Marcos, Juan I. Larruquert, Alain J. Corso, Remo Proietti Zaccaria, and Maria G. Pelizzo. 2020. "Mirrors for Space Telescopes: Degradation Issues" Applied Sciences 10, no. 21: 7538. https://doi.org/10.3390/app10217538