Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies
Abstract
:1. Introduction
- With age, the central nervous system loses the capacity for axonal regrowth;
- Axonal injury triggers some cycles of apoptosis.
- There is a relation between the temperature of the ocular anterior chamber and the intraocular pressure;
- There is a relation between the cornea temperature and the temperature of the ocular anterior chamber;
- There is a relation between the cornea temperature and its elastic behavior;
- There is a relation between the IOP and cornea thickness.
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Parsadaniantz, S.M.; Le Goazigo, A.R.; Sapienza, A.; Habas, C.; Baudouin, C. Glaucoma: A Degenerative Optic Neuropathy Related to Neuroinflammation? Cells 2020, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, I.; Howell, G.R. The complex role of neuroinflammation in glaucoma. Cold Spring Harb. Perspect. Med. 2014, 4, a017269. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. Immune regulation toward immunomodulation for neuroprotection in glaucoma. Curr. Opin. Pharmacol. 2013, 13, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wax, M.B.; Tezel, G.; Yang, J.; Peng, G.; Patil, R.V.; Agarwal, N.; Sappington, R.M.; Calkins, D.J. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J. Neurosci. 2008, 28, 12085–12096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Yucel, Y.H. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 2007, 18, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Yucel, Y.H.; Gupta, N. Glaucoma of the brain: A disease model for the study of transsynaptic neural degeneration. Prog. Brain Res. 2008, 173, 465–478. [Google Scholar] [CrossRef]
- Imamura, K.; Onoe, H.; Shimazawa, M.; Wada, S.N.Y.; Kato, K.; Nakajima, H.; Mizuma, H.; Onoe, K.; Taniguchi, T.; Sasaoka, M.; et al. Molecular imaging reveals unique degenerative changes in experimental glaucoma. Neuroreport 2009, 20, 139–144. [Google Scholar] [CrossRef]
- Shum, J.W.H.; Liu, K.; So, K. The progress in optic nerve regeneration, where are we? Neural Regen. Res. 2016, 11, 32–36. [Google Scholar] [CrossRef]
- Bejan, A. The golden ratio predicted: Vision, cognition and locomotion as a single designin nature. Int. J. Des. Nat. Ecodyn. 2009, 4, 97–104. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Dolcino, D.; Astori, M.R.; Massa, E.; Ponzetto, A. Constructal approach to bio-engineering: The ocular anterior chamber temperature. Sci. Rep. 2016, 6, 31099. [Google Scholar] [CrossRef] [PubMed]
- Lucia, U.; Grisolia, G.; Astori, M.R. Constructal law analysis of Cl− transport in eyes aqueous humor. Sci. Rep. 2017, 7, 6856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucia, U.; Grisolia, G.; Francia, S.; Astori, M.R. Theoretical biophysical approach to cross-linking effects on eyes pressure. Physica A 2019, 534, 122163. [Google Scholar] [CrossRef]
- Yang, M.; Brackenbury, W.J. Membrane potential and cancer progression. Front. Physiol. 2013, 4, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundelacruz, S.; Levin, M.; Kaplan, D.L. Role of the membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev. Rep. 2009, 5, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Lobikin, M.; Chernet, B.; Lobo, D.; Levin, M. Resting potential, oncogene-induced tumorigenesis, and metastasis: The bioelectric basis of cancer in vivo. Phys. Biol. 2012, 9, 065002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, A.; Fabian, A.; Hanley, P.J.; Stock, C. Role of the ion channels and transporters in cell migration. Physiol. Rev. 2012, 92, 1865–1913. [Google Scholar] [CrossRef] [PubMed]
- Goldman, D.E. Potential impedance, and rectification in membranes. J. Gen. Physiol. 1943, 27, 37–60. [Google Scholar] [CrossRef] [Green Version]
- Hodgkin, A.L.; Katz, B. The effect of sodium ions on the electrical activity of giant axon of the squid. J. Physiol. 1949, 108, 37–77. [Google Scholar] [CrossRef]
- Grabe, M.; Wang, H.; Oster, G. The mechanochemistry of V-ATPase proton pumps. Biophs. J. 2000, 78, 2798–2813. [Google Scholar] [CrossRef] [Green Version]
- Guyton, A.C.; Hall, J.E. Textbook of Medical Physiology, 11th ed.; Elsevier Inc.: Philadelphia, PA, USA, 1960. [Google Scholar]
- Lucia, U. Bioengineering thermodynamics: An engineering science for thermodynamics of biosystems. Int. J. Thermodyn. 2015, 18, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U. Bioengineering thermodynamics of biological cells. Theor. Biol. Med Model. 2015, 29, 254–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yourgrau, W.; van der Merwe, A.; Raw, G. Treatise on Irreversible and Statistical Thermophysics; Dover: New York, NY, USA, 1982. [Google Scholar]
- Callen, H.B. Thermodynamics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Lucia, U.; Grisolia, G. How Life Works—A Continuous Seebeck-Peltier Transition in Cell Membrane? Entropy 2020, 22, 960. [Google Scholar] [CrossRef]
- Katchalsky, A.; Currant, P.F. Nonequilibrium Thermodynamics in Biophysics; Harvard University Press: Boston, MA, USA, 1965. [Google Scholar]
- Goupil, C.; Seifert, W.; Zabrocki, K.; Müller, E.; Snyder, G.J. Thermodynamics of Thermoelectric Phenomena and Applications. Entropy 2011, 13, 1481–1517. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U.; Grisolia, G. Thermal Resonance and Cell Behavior. Entropy 2020, 22, 774. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Resonance in thermal fluxes through cancer membrane. Atti dell’Accademia Peloritana dei Pericolanti 2020, 98, SC1. [Google Scholar]
- Lucia, U.; Grisolia, G. Second law efficiency for living cells. Front. Biosci. 2017, 9, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U.; Grisolia, G. Non-equilibrium thermodynamic approach to Ca2+-fluxes in cancer. Appl. Sci. 2020, 10, 6737. [Google Scholar] [CrossRef]
- Schrödinger, E. What’s Life? The Physical Aspect of the Living Cell; Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Prigogine, I. Structure, Dissipation and Life. In Theoretical Physics and Biology; Marois, M., Ed.; North Holland Pub. Co.: Amsterdam, The Netherland, 1969. [Google Scholar]
- Atkins, P.; Paula, J.D. Physical Chemistry for Life Sciences; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Ashrafuzzaman, M.; Tuszynski, J. Membrane Biophysics; Springer: Berlin, Germany, 2013. [Google Scholar]
- Russo, R.; Varano, G.P.; Adornetto, A.; Nucci, C.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation. Eur. J. Pharmacol. 2016, 787, 134–142. [Google Scholar] [CrossRef]
- Williams, P.A.; Marsh-Armstrong, N.; Howell, G.R. Neuroinflammation in glaucoma: A new opportunity. Exp. Eye Res. 2017, 157, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Cho, K.S.; Thee, E.F.; Jager, M.J.; Chen, D.F. Neuroimmflammation and microglia in glaucoma—Time for a paradigm shift. J. Neurosci. Res. 2019, 97, 70–76. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Rosso, M.P.; Buchaim, D.V.; Kawano, N.; Furlanette, G.; Pomini, K.T.; Buchaim, R.L. Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. Bioengineering 2018, 5, 44. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies. Appl. Sci. 2020, 10, 7071. https://doi.org/10.3390/app10207071
Lucia U, Grisolia G. Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies. Applied Sciences. 2020; 10(20):7071. https://doi.org/10.3390/app10207071
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2020. "Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies" Applied Sciences 10, no. 20: 7071. https://doi.org/10.3390/app10207071
APA StyleLucia, U., & Grisolia, G. (2020). Thermal Physics and Glaucoma: From Thermodynamic to Biophysical Considerations to Designing Future Therapies. Applied Sciences, 10(20), 7071. https://doi.org/10.3390/app10207071