An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications
Abstract
:1. Introduction
2. Theory
2.1. General Description
2.2. Problem Statement
External Applied Magnetic Field
2.3. Solution Strategy
2.3.1. Velocity for the Liquid Phase
2.3.2. Power Dissipation
3. Materials and Methods
3.1. Setup 1: Bubbles
3.2. Setup 2: Cultures
3.2.1. Biological Material and Culture Conditions
- Species 1 is a freshwater microalga belonging to the Chlorophyceae class. It is immobile and forms aligned colonies. It is mainly characterized by the absence of a rigid cellular wall, which is made of polysaccharides. The cell is included in a thin and elastic plasma membrane in a mucilaginous envelope [47]. It also has a great biotechnological interest due to the high production of antioxidant compounds such as lutein [48].
3.2.2. Exposure to External Static Magnetic Fields
3.2.3. Physicochemical Parameters
3.2.4. Enzymatic Activity
3.2.5. Carotenoid Quantification
4. Results and Discussion
4.1. Liquid Velocity for Different Media with Varying
4.1.1. Medium 1
4.1.2. Medium 2
4.2. Power Dissipation
4.3. Effects at Biological Level: ROS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Definition of variables to be used: for the axial spatial coordinate , ranging from 0 to R, B0 for the values of the magnetic flux density (B0), B for the zeros of the Bessel function of the first kind (J0), and for the time values at which the velocity is evaluated.
- Assignment of geometrical and medium parameters.
References
- Nadkarni, R.; Barkley, S.; Fradin, C. A comparison of methods to measure the magnetic moment of magnetotactic bacteria through analysis of their trajectories in external magnetic fields. PLoS ONE 2013, 8, 64. [Google Scholar] [CrossRef] [Green Version]
- Günther, A.; Einwich, A.; Sjulstok, E.; Feederle, R.; Bolte, P.; Koch, K.W.; Solov′yov, I.A.; Mouritsen, H. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4. Curr. Biol. 2018, 28, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.F.; Cheng, J.Y.; Chang, H.F.; Yamamoto, T.; Shen, A.Q. Uniform electric field generation in circular multi-well culture plates using polymeric inserts. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Durmus, N.G.; Tekin, H.C.; Guven, S.; Sridhar, K.; Arslan Yildiz, A.; Calibasi, G.; Ghiran, I.; Davis, R.W.; Steinmetz, L.M.; Demirci, U. Magnetic levitation of single cells. Proc. Natl. Acad. Sci. USA 2015, 112, E3661–E3668. [Google Scholar] [CrossRef] [Green Version]
- Winkleman, A.; Gudiksen, K.L.; Ryan, D.; Whitesides, G.M.; Greenfield, D.; Prentiss, M. A magnetic trap for living cells suspended in a paramagnetic buffer. Appl. Phys. Lett. 2004, 85, 2411–2413. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, N.; Sathish, S.; Sinha, A.; Shen, A.Q. Large-Scale Nanophotonic Structures for Long-Term Monitoring of Cell Proliferation. Adv. Biosyst. 2018, 2, 1–7. [Google Scholar] [CrossRef]
- Ghodbane, S.; Lahbib, A.; Sakly, M.; Abdelmelek, H. Bioeffects of Static Magnetic Fields: Oxidative Stress, Genotoxic Effects, and Cancer Studies. Biommed. Res. Int. 2013, 2013, 2987. [Google Scholar] [CrossRef] [Green Version]
- Steiner, U.E.; Ulrich, T. Magnetic Field Effects in Chemical Kinetics and Related Phenomena. Chem. Rev. 1989, 89, 51–147. [Google Scholar]
- Albuquerque, W.W.C.; Costa, R.M.P.B.; de Salazar e Fernandes, T.; Porto, A.L.F. Evidences of the static magnetic field influence on cellular systems. Prog. Biophys. Mol. Biol. 2016, 121, 16–28. [Google Scholar] [CrossRef]
- Asada, K. The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu. Rev. Plant Physiol Plant Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef]
- Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and reactive oxygen species. Free Radic. Biol. Med. 2009, 47, 333–343. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Pinto, E.; Sigaud-kutner, T.C.S.; Leitao, M.A.S.; Okamoto, O.K.; Morse, D.; Colepicolo, P. Heavy metal-induced oxidative stress in algae. J. Phycol. 2003, 39, 1008–1018. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef]
- Beckman, J.S.; Carson, M.; Smith, C.D.; Koppenol, W.H. ALS, SOD and peroxynitrite. Nature 1993, 364, 584. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219, 1–14. [Google Scholar] [CrossRef]
- Guo, Y.-Z.; Yin, D.-C.; Cao, H.-L.; Shi, J.-Y.; Zhang, C.-Y.; Liu, Y.-M.; Huang, H.-H.; Liu, Y.; Wang, Y.; Guo, W.-H.; et al. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient. Int. J. Mol. Sci. 2012, 13, 16916–16928. [Google Scholar] [CrossRef] [Green Version]
- Toledo, E.J.L.; Ramalho, T.C.; Magriotis, Z.M. Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 2008, 888, 409–415. [Google Scholar] [CrossRef]
- Cai, R.; Yang, H.; He, J.; Zhu, W. The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 2009, 938, 15–19. [Google Scholar] [CrossRef]
- Xantheas, S.S. Cooperativity and hydrogen bonding network in water clusters. Chem. Phys. 2000, 258, 225–231. [Google Scholar] [CrossRef]
- Chang, K.-T.; Weng, C.-I. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 2006, 100, 043917. [Google Scholar] [CrossRef] [Green Version]
- Fujimura, Y.; Iino, M. The surface tension of water under high magnetic fields. J. Appl. Phys. 2008, 103, 128. [Google Scholar] [CrossRef]
- Holysz, L.; Szczes, A.; Chibowski, E. Effects of a static magnetic field on water and electrolyte solutions. J. Colloid Interface Sci. 2007, 316, 996–1002. [Google Scholar] [CrossRef]
- Noriyuki, H.; Yasuhiro, I.; Hiromichi, U.; Jun, N.; Koichi, K. Magnetic Field Effect on the Kinetics of Oxygen Dissolution into Water. Mater. Trans. JIM 2000, 41, 976–980. [Google Scholar] [CrossRef] [Green Version]
- Sommerfeld, M. Particles in Flows; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Lea, J.F.; Nickens, H.V.; Wells, M.R. Gas Well Deliquification; Gulf Professional Publishing: Woburn, MA, USA, 2008. [Google Scholar] [CrossRef]
- Sokolichin, A.; Eigenberger, G.; Lapin, A. Simulation of Buoyancy Driven Bubbly Flow: Established Simplifications and Open Questions. AIChE J. 2004, 50, 24–45. [Google Scholar] [CrossRef]
- Ishii, M.; Hibiki, T. Thermo-Fluid Dynamics of Two-Phase Flow; Springer: Berlin, Germany, 2006. [Google Scholar] [CrossRef]
- Yeoh, G.H.; Tu, J. Computational Techniques for Multiphase Flows; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Knaepen, B.; Moreau, R. Magnetohydrodynamic Turbulence at Low Magnetic Reynolds Number. Annu. Rev. Fluid Mech. 2008, 40, 25–45. [Google Scholar] [CrossRef]
- Davidson, P.A. An Introduction to Magnetohydrodynamics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kuzmin, D.; Haario, H.; Turek, S. Finite Element Simulation of Turbulent Bubbly Flows in Gas-Liquid Reactors; Univ. Dortmund, Fachbereich Mathematik: Dortmund, Germany, 2005. [Google Scholar]
- Schwarz, M.P.; Turner, W.J. Applicability of the standard k-ε turbulence model to gas-stirred baths. Appl. Math. Model. 1988, 12, 273–279. [Google Scholar] [CrossRef]
- Bocci, A.; Scarpello, G.M.; Ritelli, D. Unsteady Roto-Translational Viscous Flow: Analytical Solution to Navier-Stokes Equations in Cylindrical Geometry. J Geom. Symmetry Phys. 2018, 48, 1–21. [Google Scholar] [CrossRef]
- Koshlyakov, N.S.; Smirnov, M.M.; Gliner, E.B. Differential Equations of Mathematical Physics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Moreau, R. Magnetohydrodynamics; Springer-Science+Business Media, B.V.: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops and Particles; Academic Press, INC.: New York, NY, USA, 1979; Volume 5. [Google Scholar] [CrossRef]
- Davidson, P.A. Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech. 1999, 31, 273–300. [Google Scholar] [CrossRef]
- Davidson, P.A. The role of angular momentum in the magnetic damping of turbulence. J. Fluid Mech. 1997, 336, 123–150. [Google Scholar] [CrossRef]
- Vinnett, L.; Ledezma, T.; Alvarez-Silva, M.; Waters, K. Gas holdup estimation in flotation machines using image techniques and superficial gas velocity. Miner. Eng. 2016, 96–97, 26–32. [Google Scholar] [CrossRef]
- Clanet, C.; Héraud, P.; Searby, G. On the motion of bubbles in vertical tubes of arbitrary cross-sections: Some complements to the Dumitrescu-Taylor problem. J. Fluid Mech. 2004, 519, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Bold, H.C. The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bull. Torrey Bot. Club 1949, 76, 101. [Google Scholar] [CrossRef]
- Bischoff, H.W.; Bold, H.C. Some Soil Algae from Enchanted Rock and Related Algal Species; University of Texas: Austin, TX, USA, 1963. [Google Scholar]
- Guillard, R.R.; Ryther, J.H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef]
- Hoek, C.; Mann, D.G.; Jahns, H.M. Algae: An Introduction to Phycology; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Fan, H.; Jin, M.; Wang, H.; Xu, Q.; Xu, L.; Wang, C.; Du, S.; Liu, H. Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure. Environ. Pollut. 2019, 250, 155–165. [Google Scholar] [CrossRef]
- Lubián, L.M. Nannochloropsis gaditana sp. nov, una nueva Eusiigmatophyceae marina. Lazaroa 1982, 4, 287–293. [Google Scholar]
- Cancela, A.; Pérez, L.; Febrero, A.; Sánchez, A.; Salgueiro, J.L.; Ortiz, L. Exploitation of Nannochloropsis gaditana biomass for biodiesel and pellet production. Renew. Energy 2019, 133, 725–730. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- 26th ITTC Specialist Committee on Uncertainty Analysis. ITTC Recommended Procedures, “Fresh Water and Seawater Procedure,” International Towing Tank Conference. Available online: https://ittc.info/media/3363/ittc_ua.pdf (accessed on 10 January 2020).
- Janknegt, P.J.; Rijstenbil, J.W.; van de Poll, W.H.; Gechev, T.S.; Buma, A.G.J. A comparison of quantitative and qualitative superoxide dismutase assays for application to low temperature microalgae. J. Photochem. Photobiol. B Biol. 2007, 87, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Cartes, P.; McManus, M.; Wulff-Zottele, C.; Leung, S.; Gutiérrez-Moraga, A.; Mora, M.L. Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminium stress. Plant Soil 2012, 350, 353–363. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Donahue, J.L.; Okpodu, C.M.; Cramer, C.L.; Grabau, E.A.; Alscher, R.G. Responses of Antioxidants to Paraquat in Pea Leaves (Relationships to Resistance). Plant Physiol. 1997, 113, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinhero, R.G.; Rao, M.V.; Paliyath, G.; Murr, D.P.; Fletcher, R.A. Changes in Activities of Antioxidant Enzymes and Their Relationship to Genetic and Paclobutrazol-Induced Chilling Tolerance of Maize Seedlings. Plant Physiol. 1997, 114, 695–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Magnúsdóttir, M.; Brynjólfson, S.; Palsson, B.; Paglia, G. UPLC-UV-MSE analysis for quantification and identification of major carotenoid and chlorophyll species in algae. Anal. Bioanal. Chem. 2012, 404, 3145–3154. [Google Scholar] [CrossRef] [PubMed]
- Lozano, P.; Trombini, C.; Crespo, E.; Blasco, J.; Moreno-Garrido, I. ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicol. Environ. Saf. 2014, 104, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.R.; Sarada, R.; Baskaran, V.; Ravishankar, G.A. Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. J. Agric. Food Chem. 2006, 54, 4593–4599. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: The first twenty years (1968–1988). Free Radic. Biol. Med. 1988, 5, 363–369. [Google Scholar] [CrossRef]
- Janknegt, P.J.; De Graaff, C.M.; Van De Poll, W.H.; Visser, R.J.W.; Helbling, E.W.; Buma, A.G.J. Antioxidative responses of two marine microalgae during acclimation to static and fluctuating natural uv radiation. Photochem. Photobiol. 2009, 85, 1336–1345. [Google Scholar] [CrossRef]
- Raha, S.; Robinson, B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 2000, 25, 502–508. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; OUP: Oxford, UK, 2015. [Google Scholar]
- Beattie, C.L. Table of First 700 Zeros of Bessel Functions—Jl(x) and J’l(x). Bell Syst. Tech. J. 1958, 37, 689–697. [Google Scholar] [CrossRef]
N° | Group | Meaning | Description |
---|---|---|---|
1 | C | Control | No magnetic field applied |
2 | S | South | All south poles oriented to the center of the flask |
3 | N | North | All north poles oriented to the center of the flask |
Value | Medium 1: (BBM) | Medium 2: (f/2) | Comment |
---|---|---|---|
Volume fraction, liquid, | 0.978 | 0.978 | Measured, in Section 3.1. |
Volume fraction, gas, | 0.022 | 0.022 | Measured, in Section 3.1. |
Density, (kg/m3) | 998.2 | 1024.8 | Fresh and sea water [51,52] |
Dynamic viscosity, (Pa s) | 0.001002 | 0.001077 | Fresh and sea water [52] |
Kinematic viscosity, (m2/s) | 1.0038 × 10−6 | 1.05094 × 10−6 | Fresh and sea water [52] |
Conductivity, (S/m) | 0.09 | 4.3 | Measured, in Section 3.2.2 |
, | Coefficient of Determination | |||
---|---|---|---|---|
0.125 | 0.0156 | 1.3 × 10−8 | 242.1 | 0.97891 |
0.25 | 0.0625 | 5.3 × 10−8 | 241.5 | 0.97897 |
0.375 | 0.1406 | 1.2 × 10−7 | 239.8 | 0.97907 |
0.5 | 0.25 | 2.1 × 10−7 | 238.1 | 0.97920 |
0.75 | 0.5625 | 4.7 × 10−7 | 233.1 | 0.99958 |
1 | 1 | 8.5 × 10−7 | 226.8 | 0.98008 |
, | Coefficient of Determination | |||
---|---|---|---|---|
0.125 | 0.0156 | 3.5 × 10−4 | 387.6 | 0.99864 |
0.25 | 0.0625 | 1.4 × 10−3 | 339.0 | 0.99898 |
0.375 | 0.1406 | 3.1 × 10−3 | 280.1 | 0.99928 |
0.5 | 0.25 | 5.0 × 10−3 | 223.2 | 0.99943 |
0.75 | 0.5625 | 1.3 × 10−2 | 139.1 | 0.99941 |
1 | 1 | 2.2 × 10−2 | 89.8 | 0.99937 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrada, P.; Rodríguez, S.; Serrano, G.; Miranda-Ostojic, C.; Maureira, A.; Zapata, M. An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications. Appl. Sci. 2020, 10, 531. https://doi.org/10.3390/app10020531
Ferrada P, Rodríguez S, Serrano G, Miranda-Ostojic C, Maureira A, Zapata M. An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications. Applied Sciences. 2020; 10(2):531. https://doi.org/10.3390/app10020531
Chicago/Turabian StyleFerrada, Pablo, Sebastián Rodríguez, Génesis Serrano, Carol Miranda-Ostojic, Alejandro Maureira, and Manuel Zapata. 2020. "An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications" Applied Sciences 10, no. 2: 531. https://doi.org/10.3390/app10020531
APA StyleFerrada, P., Rodríguez, S., Serrano, G., Miranda-Ostojic, C., Maureira, A., & Zapata, M. (2020). An Analytical–Experimental Approach to Quantifying the Effects of Static Magnetic Fields for Cell Culture Applications. Applied Sciences, 10(2), 531. https://doi.org/10.3390/app10020531