Simultaneous Analysis of Seven Neonicotinoids in Commercial Milk Samples Using an UHPLC-MS/MS Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Calibrators Preparation
2.2. NEOs Extraction
2.3. UHPLC-MS/MS Analysis
3. Results and Discussion
3.1. Methodological Evaluation
3.2. Method Application
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Starner, K.; Goh, K.S. Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull. Environ. Contam. Toxicol. 2012, 88, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Bonmatin, J.; Moineau, I.; Charvet, R.; Fleche, C.; Colin, M.; Bengsch, E. A LC/APCI-MS/MS method for analysis of imidacloprid in soils, in plants, and in pollens. Anal. Chem. 2003, 75, 2027–2033. [Google Scholar] [CrossRef] [PubMed]
- Sadaria, A.M.; Supowit, S.D.; Halden, R.U. Mass balance assessment for six neonicotinoid insecticides during conventional wastewater and wetland treatment: Nationwide reconnaissance in United States wastewater. Environ. Sci. Technol. 2016, 50, 6199–6206. [Google Scholar] [CrossRef]
- Chen, M.; Tao, L.; McLean, J.; Lu, C. Quantitative analysis of neonicotinoid insecticide residues in foods: Implication for dietary exposures. J. Agric. Food Chem. 2014, 62, 6082–6090. [Google Scholar] [CrossRef]
- Ling, M.P.; Hsiao, H.A.; Chen, S.C.; Chen, W.Y.; Chou, W.C.; Lin, Y.-J.; You, S.-H.; Yang, Y.-F.; Lin, H.-C.; Chen, C.-Y.; et al. Assessing dietary exposure risk to neonicotinoid residues among preschool children in regions of Taiwan. Environ. Sci. Pollut. Res. 2020, 27, 12112–12121. [Google Scholar] [CrossRef] [PubMed]
- Craddock, H.A.; Huang, D.; Turner, P.C.; Quirós-Alcalá, L.; Payne-Sturges, D.C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health. 2019, 18, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, D.A.; Lehmler, H.J.; Kolpin, D.W.; Hladik, M.L.; Vargo, J.D.; Schilling, K.E.; Cwiertny, D.M. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environ. Sci. Process. Impacts 2020, 22. [Google Scholar] [CrossRef]
- EFSA PPR Panel (EFSA Panel on Plant Protection Products and Their Residues). Scientific Opinion on the developmental neurotoxicity potential of acetamiprid and imidacloprid. EFSA J. 2013, 11, 3471. [Google Scholar]
- Codex Pesticides Residues in Food Online Database. 2020. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ (accessed on 29 June 2020).
- Liu, S.; Zheng, Z.; Wei, F.; Ren, Y.; Gui, W.; Wu, H.; Zhu, G. Simultaneous determination of seven neonicotinoid pesticide residues in food by ultraperformance liquid chromatography tandem mass spectrometry. J. Agric. Food Chem. 2010, 58, 3271–3278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, Y.; Yu, C.; Pan, C. Determination of six neonicotinoid insecticides residues in spinach, cucumber, apple and pomelo by QuEChERS method and LC-MS/MS. Bull. Environ. Contam. Toxicol. 2012, 88, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-López, J.; Llorent-Martínez, E.J.; Ortega-Barrales, P.; Ruiz-Medina, A. Analysis of neonicotinoid pesticides in the agri-food sector: A critical assessment of the state of the art. Appl. Spectrosc. Rev. 2020, 55, 613–646. [Google Scholar] [CrossRef]
- Fedrizzi, G.; Altafini, A.; Armorini, S.; Al-Qudah, K.M.; Roncada, P. LC–MS/MS Analysis of Five Neonicotinoid Pesticides in Sheep and Cow Milk Samples Collected in Jordan Valley. Bull. Environ. Contam. Toxicol. 2019, 102, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Seccia, S.; Fidente, P.; Montesano, D.; Morrica, P. Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection. J. Chromatogr. A 2008, 1214, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Luiz, M.M.; Plaza-Bolaños, P.; Romero-González, R.; Vidal, J.M.; Frenich, A.G. Comparison of the efficiency of different extraction methods for the simultaneous determination of mycotoxins and pesticides in milk samples by ultra high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2011, 399, 2863–2875. [Google Scholar] [CrossRef] [PubMed]
- Kamel, A.; Qian, Y.; Kolbe, E.; Stafford, C. Development and validation of a multiresidue method for the determination of neonicotinoid and macrocyclic lactone pesticide residues in milk, fruits, and vegetables by ultra-performance liquid chromatography/MS/MS. J. AOAC Int. 2010, 93, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lachat, L.; Glauser, G. Development and Validation of an Ultra-Sensitive UHPLC-MS/MS Method for Neonicotinoid Analysis in Milk. J. Agri. Food Chem. 2018, 66, 8639–8646. [Google Scholar] [CrossRef] [PubMed]
- Adelantado, C.; Ríos, Á.; Zougagh, M. Magnetic nanocellulose hybrid nanoparticles and ionic liquid for extraction of neonicotinoid insecticides from milk samples prior to determination by liquid chromatography-mass spectrometry. Food Addit. Contam. Part. A Chem. Anal. Control. Expo. Risk Assess. 2018, 35, 1755–1766. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Kundu, A.; Ray, S. A Validated Method for the Determination of Neonicotinoid, Pyrethroid and Organochlorine Residues in Human Milk. Chromatographia 2018, 81, 315–325. [Google Scholar] [CrossRef]
- Oliveira, F.A.; Madureira, F.D.; Lopes, R.P.; Ferreira, M.G.; Soto-Blanco, B.; Melo, M.M. Optimization of chromatographic conditions and comparison of extraction efficiencies of four different methods for determination and quantification of pesticide content in bovine milk by UFLC-MS/MS. Química Nova 2014, 37, 1699–1706. [Google Scholar] [CrossRef]
- DR Ehrenstorfer. Use of Stable Isotope Internal Standards for Trace Organic Analysis. 2020. Available online: https://s3-eu-west-1.amazonaws.com/lgcstandards-assets/MediaGallery/Dre/DRE001_Isotope-White-Paper_271117.pdf (accessed on 23 September 2020).
- IRAC International MoA Working Group. IRAC Mode of Action Classification Scheme. 2020. Available online: http://www.irac-online.org/documents/moa-classification/?ext=pdf (accessed on 23 September 2020).
Analytes | RT (Min) | Transition 1 (Quantifier) | CE 1(V) | Transition 2 (Qualifier) | CE 2(V) |
---|---|---|---|---|---|
Dinotefuran | 4.74 | 203→129.05 | 13 | 203→113.10 203→87.10 | 10 |
Nitenpyram | 5.34 | 271→225.00 | 20 | 271→189.00 271→99.00 | 21 |
Thiamethoxam | 5.96 | 292→211.05 | 14 | 292→181.05 292→131.95 | 24 |
d3-Thiamethoxam | 5.93 | 295→214.10 | 12 | 295→132.00 | 25 |
Clothianidin | 6.34 | 250→169.10 | 12 | 250→132.00 | 21 |
d3-Clothianidin | 6.26 | 253→172.10 | 30 | 253→132.00 | 33 |
Imidacloprid | 6.43 | 256→209.05 | 16 | 256→175.05 | 18 |
d4-Imidacloprid | 6.45 | 260→213.05 | 14 | 260→179.10 | 21 |
Acetamiprid | 6.66 | 223→126.05 | 18 | 223→56.10 | 42 |
d3-Acetamiprid | 6.61 | 226→126.05 | 19 | 226→59.00 | 16 |
Thiacloprid | 7.16 | 253→126.00 | 22 | 253→90.00 | 45 |
Analytes | Matrix-Matched Calibration Curve in Milk | R2 | Calibration Curve in Solvent | R2 | Matrix Effect (%) | LOD (μg/kg) | LOQ (μg/kg) |
---|---|---|---|---|---|---|---|
Dinotefuran | y = 28910x + 258145 | 0.996 | y = 31341x − 17851 | 0.996 | 92 | 0.15 | 0.36 |
Nitenpyram | y = 4070.3x − 9237.4 | 0.999 | y = 3733.6x − 2563.6 | 0.992 | 109 | 0.05 | 0.17 |
Thiamethoxam | y = 0.1197x + 0.8938 | 0.999 | y = 0.1733x + 0.3865 | 0.992 | 69 | 0.01 | 0.03 |
Clothianidin | y = 1.4532x − 2.296 | 0.999 | y = 1.6925x − 3.7207 | 0.999 | 86 | 0.01 | 0.03 |
Imidacloprid | y = 0.1361x − 0.0283 | 0.999 | y = 0.1445x + 0.2521 | 0.994 | 94 | 0.02 | 0.05 |
Acetamiprid | y = 0.0121x − 0.0014 | 0.999 | y = 0.012x − 0.001 | 0.999 | 101 | 0.06 | 0.20 |
Thiacloprid | y = 602482x + 304377 | 0.999 | y = 620973x + 329412 | 0.999 | 97 | 0.004 | 0.01 |
Analytes | Precision (% RSD, n = 9) | Accuracy (%, n = 9) | |||||||
---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | ||||||||
8 μg/kg | 12 μg/kg | 16 μg/kg | 8 μg/kg | 12 μg/kg | 16 μg/kg | 8 μg/kg | 12 μg/kg | 16 μg/kg | |
Dinotefuran | 9.6 | 2.0 | 2.0 | 15.8 | 7.1 | 4.3 | 101 | 113 | 97 |
Nitenpyram | 10.3 | 1.4 | 4.1 | 23.8 | 2.1 | 19.5 | 89 | 119 | 104 |
Thiamethoxam | 8.1 | 4.4 | 2.8 | 11.3 | 14.1 | 10.8 | 102 | 107 | 102 |
Clothianidin | 3.7 | 8.1 | 7.5 | 12.2 | 10.1 | 11.0 | 103 | 103 | 105 |
Imidacloprid | 9.9 | 5.6 | 3.2 | 17.8 | 8.0 | 6.7 | 102 | 103 | 101 |
Acetamiprid | 2.8 | 1.4 | 2.3 | 8.5 | 5.5 | 8.6 | 109 | 92 | 97 |
Thiacloprid | 8.8 | 1.6 | 1.3 | 17.7 | 4.5 | 5.2 | 110 | 100 | 96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-F.; Huang, Y.-M.; Lee, H.-J. Simultaneous Analysis of Seven Neonicotinoids in Commercial Milk Samples Using an UHPLC-MS/MS Method. Appl. Sci. 2020, 10, 6775. https://doi.org/10.3390/app10196775
Huang Y-F, Huang Y-M, Lee H-J. Simultaneous Analysis of Seven Neonicotinoids in Commercial Milk Samples Using an UHPLC-MS/MS Method. Applied Sciences. 2020; 10(19):6775. https://doi.org/10.3390/app10196775
Chicago/Turabian StyleHuang, Yu-Fang, Yi-Min Huang, and Hsin-Jui Lee. 2020. "Simultaneous Analysis of Seven Neonicotinoids in Commercial Milk Samples Using an UHPLC-MS/MS Method" Applied Sciences 10, no. 19: 6775. https://doi.org/10.3390/app10196775
APA StyleHuang, Y.-F., Huang, Y.-M., & Lee, H.-J. (2020). Simultaneous Analysis of Seven Neonicotinoids in Commercial Milk Samples Using an UHPLC-MS/MS Method. Applied Sciences, 10(19), 6775. https://doi.org/10.3390/app10196775