Multi-Scale Probabilistic Analysis for the Mechanical Properties of Plain Weave Carbon/Epoxy Composites Using the Homogenization Technique
Abstract
1. Introduction
2. Verification of Homogenization Analysis for Unidirectional Composites
2.1. Material and Specimen
2.2. Homogenization Analysis Technique
2.3. Homogenization Analysis and Experimental Results
3. Probabilistic Homogenization Analysis at the Micro-Level for Plain-Weave Composites
3.1. Random Variables for the Probabilistic Homogenization Technique at the Micro-Level
3.2. Effective Properties at the Micro-Level
4. Probabilistic Homogenization Analysis at the Macro-Level for Plain Weave Composites
4.1. Homogenization Analysis Technique at the Macro-Level
4.2. Effective Properties at the Macro-Level
4.3. Sensitivity Analysis
5. Conclusions
- To verify the effective properties of the homogenization technique applied in this study, the analysis results of the effective properties at the micro-level with the combination of the carbon fiber and epoxy were compared with the ROM theory. In addition, the UD composites with the same geometry of the micro-level was fabricated and compared with the tensile test results to experimentally verify the homogenization technique.
- The MCS based on the homogenization analysis technique was performed at the micro-level to evaluate the uncertainties in the mechanical properties of the composites. The results showed that the effective properties of the micro-level followed the normal distribution same as those of the carbon fiber and epoxy.
- The MCS was performed based on the homogenization technique for the fabric composite (macro-level) combined with the tow and matrix was performed based on the effective properties of the micro-level. The effective properties of the macro-level had the same distribution characteristics as those of the tow and matrix.
- The sensitivity analysis between the properties of constituents (carbon fiber and epoxy) and the effective properties of the macro-level exhibits that the fabric composite is ultimately dependent on the mechanical properties of the carbon fiber and epoxy.
Author Contributions
Funding
Conflicts of Interest
References
- Lee, D.W.; Song, J.I. Research on simple joint method using fiber-metal laminate design for improved mechanical properties of CFRP assembly structure. Compos. Part B Eng. 2019, 164, 358–367. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Yokozeki, T.; Aoki, T. The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures. Compos. Struct. 2019, 220, 11–18. [Google Scholar] [CrossRef]
- Tang, E.; Li, W.; Han, Y. Research on the interacting duration and microscopic characteristics created by high-velocity impact on CFRP/Al HC SP structure. J. Mater. Res. Technol. 2019, 9, 1640–1651. [Google Scholar] [CrossRef]
- Golewski, P.; Sadowski, T. Description of thermal protection against heat transfer of carbon fiber reinforced plastics (CFRP) coated by stiffened ceramic mat (TBC). Compos. Struct. 2019, 229, 111489. [Google Scholar] [CrossRef]
- Behera, A.; Dupare, P.; Thawre, M.M.; Ballal, A. Effects of hygrothermal aging and fiber orientations on constant amplitude fatigue properties of CFRP Multidirectional composite laminates. Int. J. Fatigue 2020, 136, 105590. [Google Scholar] [CrossRef]
- Tian, W.; Qi, L.; Liang, J.; Chao, X.; Zhou, J. Evaluation for elastic properties of metal matrix composites with randomly distributed fibers: Two-step mean-field homogenization procedure versus FE homogenization method. J. Alloys Compd. 2016, 658, 241–247. [Google Scholar] [CrossRef]
- Adumitroaie, A.; Barbero, E.J. Beyond plain weave fabrics–I. Geometrical model. Compos. Struct. 2011, 93, 1424–1432. [Google Scholar] [CrossRef]
- Gilioli, A.; Manes, A.; Giglio, M. Evaluation of the effects of the numerical modelling choices on the simulation of a tensile test on CFRP composite. Procedia Struct. Integr. 2018, 8, 33–42. [Google Scholar] [CrossRef]
- Hale, P.; Ng, E.G. Non-linear material characterization of CFRP with FEM utilizing cohesive surface considerations validated with effective tensile test fixturing. Mater. Today Commun. 2020, 23, 100872. [Google Scholar] [CrossRef]
- Li, H.X. Limit analysis of composite materials with anisotropic microstructures: A homogenization approach. Mech. Mater. 2011, 43, 574–585. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Chua, A.Y. Load-displacement experimental data from axial tensile loading of CFRP-SPCC hybrid laminates. Data Brief 2020, 29, 105306. [Google Scholar] [CrossRef] [PubMed]
- Babu, K.P.; Mohite, P.M.; Upadhyay, C.S. Development of an RVE and its stiffness predictions based on mathematical homogenization theory for short fibre composites. Int. J. Solids Struct. 2018, 130, 80–104. [Google Scholar] [CrossRef]
- Qi, Z.; Liu, Y.; Chen, W. An approach to predict the mechanical properties of CFRP based on cross-scale simulation. Compos. Struct. 2019, 210, 339–347. [Google Scholar] [CrossRef]
- Gao, J.; Shakoor, M.; Domel, G.; Merzkirch, M.; Zhou, G.; Zeng, D.; Su, X.; Liu, W.K. Predictive multiscale modeling for Unidirectional Carbon Fiber Reinforced Polymers. Compos. Sci. Technol. 2020, 186, 107922. [Google Scholar] [CrossRef]
- Mustafa, G.; Suleman, A.; Crawford, C. Probabilistic micromechanical analysis of composite material stiffness properties for a wind turbine blade. Compos. Struct. 2015, 131, 905–916. [Google Scholar] [CrossRef]
- Lee, S.P.; Jin, J.W.; Kang, K.W. Probabilistic analysis for mechanical properties of glass/epoxy composites using homogenization method and Monte Carlo simulation. Renew. Energy 2014, 65, 219–226. [Google Scholar] [CrossRef]
- Kamiński, M.; Kazimierczak, M. 2D versus 3D probabilistic homogenization of the metallic fiber-reinforced composites by the perturbation-based stochastic Finite Element Method. Compos. Struct. 2014, 108, 1009–1018. [Google Scholar] [CrossRef]
- Goda, I.; Assidi, M.; Ganghoffer, J.F. Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 2013, 61, 2537–2565. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, F.; Meguid, S.A. Multi-level modeling of woven glass/epoxy composite for multilayer printed circuit board applications. Int. J. Solids Struct. 2014, 51, 3679–3688. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Gosling, P.D.; Pearce, C.J.; Ullah, Z.; Kaczmarczyk, L. Perturbation-based stochastic multi-scale computational homogenization method for woven textile composites. Int. J. Solids Struct. 2016, 80, 368–380. [Google Scholar] [CrossRef]
- Hayat, K.; Lei, X.; Ali, H.T. Prediction of elastic behavior of woven fabric reinforced plastics composites using two-step homogenization. In Proceedings of the 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 9–13 January 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 36–42. [Google Scholar]
- COMPOSITES PLAZA. Available online: https://compositesplaza.com/ (accessed on 6 July 2020).
- FIBRE GLAST. Available online: https://www.fibreglast.com/ (accessed on 6 July 2020).
- Ostapiuk, M.; Surowska, B.; Bienias, J. Interface analysis of fiber metal laminates. Compos. Interfaces 2014, 21, 309–318. [Google Scholar] [CrossRef]
- Choi, H.; Huang, H.; Kim, D.U.; Joe, C.R. Fracture behavior of carbon/epoxy laminated composite reinforced by iron powder. Korean J. Chem. Eng. 2008, 25, 1208–1211. [Google Scholar] [CrossRef]
- ASTM D3039/D3039M-17. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Hu, A.; Li, X.; Ajdari, A.; Jiang, B.; Burkhart, C.; Chen, W.; Catherine Brinson, L. Computational analysis of particle reinforced viscoelastic polymer nanocomposites–statistical study of representative volume element. J. Mech. Phys. Solids 2018, 114, 55–74. [Google Scholar] [CrossRef]
- Bayat, M.; Aghdam, M.M. A micromechanics-based analysis of effects of square and hexagonal fiber arrays in fibrous composites using DQEM. Eur. J. Mech. A Solids 2012, 32, 32–40. [Google Scholar] [CrossRef]
- Macedo, R.Q.; Ferreira, R.T.L.; Guedes, J.M.; Donadon, M.V. Intraply failure criterion for unidirectional fiber reinforced composites by means of asymptotic homogenization. Compos. Struct. 2017, 159, 335–349. [Google Scholar] [CrossRef]
- Abaqus Documentation. Available online: https://abaqus-docs.mit.edu/2017/English/SIMACAEEXCRefMap/simaexc-c-docproc.htm (accessed on 17 September 2020).
- Tan, H.; Huang, Y.; Liu, C.; Geubelle, P.H. The Mori–Tanaka method for composite materials with nonlinear interface debonding. Int. J. Plast. 2005, 21, 1890–1918. [Google Scholar] [CrossRef]
- Klusemann, B.; Svendsen, B. Homogenization methods for multi-phase elastic composites. Tech. Mech. Sci. J. Fundam. Appl. Eng. Mech. 2010, 30, 374–386. [Google Scholar]
- Hyer, M.W.; Waas, A.M. Micromechanics of Linear Elastic Continuous Fiber Composites; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Halpin, J.C. Effects of Environmental Factors on Composite Materials; Air Force Materials Lab Wright-Patterson AFB OH: Greene, OH, USA, 1969. [Google Scholar]
- Kang, K.W.; Lim, D.M.; Kim, J.K. Probabilistic analysis for the fatigue life of carbon/epoxy laminates. Compos. Struct. 2008, 85, 258–264. [Google Scholar] [CrossRef]
- Isight. Available online: https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/SIMULIA/RESOURCES/DS_SIMULIA_IsightV40_GettingStartedGuide.pdf (accessed on 17 September 2020).
- Carvelli, V.; Poggi, C. A homogenization procedure for the numerical analysis of woven fabric composites. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1425–1432. [Google Scholar] [CrossRef]
- Jiang, Y.; Tabiei, A.; Simitses, G.J. A novel micromechanics-based approach to the derivation of constitutive equations for local/global analysis of a plain-weave fabric composite. Compos. Sci. Technol. 2000, 60, 1825–1833. [Google Scholar] [CrossRef]
- Obert, E.; Daghia, F.; Ladeveze, P.; Ballere, L. Micro and meso modeling of woven composites: Transverse cracking kinetics and homogenization. Compos. Struct. 2014, 117, 212–221. [Google Scholar] [CrossRef]
Fiber (Carbon) | Matrix (Epoxy) | |
---|---|---|
Young’s modulus (GPa) | 240.00 | 2.45 |
Shear modulus (GPa) | 93.39 | 0.91 |
Poisson’s ratio | 0.285 | 0.350 |
VF 10% | VF 20% | VF 30% | VF 40% | VF 50% | VF 60% | VF 70% | |
---|---|---|---|---|---|---|---|
E11,tow (GPa) | 27.20 | 49.80 | 72.40 | 97.20 | 120.90 | 144.75 | 168.47 |
E22,tow (GPa) | 5.84 | 6.74 | 7.80 | 6.62 | 9.06 | 13.19 | 22.42 |
E33,tow (GPa) | 5.84 | 6.74 | 7.80 | 6.62 | 9.06 | 13.19 | 22.42 |
G12,tow (GPa) | 1.95 | 2.24 | 2.57 | 2.09 | 2.71 | 3.75 | 6.14 |
G13,tow (GPa) | 1.95 | 2.24 | 2.57 | 2.09 | 2.71 | 3.75 | 6.14 |
G23,tow (GPa) | 1.90 | 2.12 | 2.35 | 1.63 | 1.96 | 2.51 | 3.79 |
ν12,tow | 0.342 | 0.324 | 0.307 | 0.320 | 0.313 | 0.306 | 0.298 |
ν13,tow | 0.342 | 0.324 | 0.307 | 0.320 | 0.313 | 0.306 | 0.298 |
ν23,tow | 0.504 | 0.496 | 0.472 | 0.392 | 0.326 | 0.252 | 0.170 |
VF (%) | SROM (GPa) | Result of Homogenization Analysis (GPa) | Error (%) |
---|---|---|---|
10 | 26.21 | 27.20 | 3.78 |
20 | 49.96 | 49.80 | 0.32 |
30 | 73.71 | 72.40 | 1.78 |
40 | 97.47 | 97.20 | 0.28 |
50 | 121.23 | 120.90 | 0.27 |
60 | 144.98 | 144.75 | 0.16 |
70 | 168.74 | 168.47 | 0.16 |
Result of Homogenization Analysis | Result of Tensile Test | Error (%) | |
---|---|---|---|
E11,tow (GPa) | 144.75 | 146.40 | 1.13 |
v12,tow | 0.30 | 0.32 | 6.25 |
Design Variable | Type | Mode | Distribution | Mean | COV |
---|---|---|---|---|---|
Ef | real | continuous | normal | 240 GPa | 0.05 |
Em | real | continuous | normal | 2.45 GPa | 0.05 |
Gf | real | continuous | normal | 93.40 GPa | 0.05 |
Gm | real | continuous | normal | 0.91 GPa | 0.05 |
vf | real | continuous | normal | 0.285 | 0.05 |
vm | real | continuous | normal | 0.350 | 0.05 |
No. | Ef | Em | Gf | Gm | vf | vm |
---|---|---|---|---|---|---|
1 | 216.79 | 2.56 | 98.53 | 0.95 | 0.292 | 0.366 |
2 | 247.96 | 2.51 | 105.71 | 866.32 | 0.287 | 0.334 |
⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ |
999 | 249.48 | 2.56 | 91.49 | 0.92 | 0.284 | 0.359 |
1000 | 244.37 | 2.44 | 93.29 | 0.83 | 0.310 | 0.353 |
Size (mm) | |
---|---|
H (Overall height) | 0.225 |
W (Overall width) | 0.9 |
L (Overall length) | 0.9 |
TL (Tow length) | 0.99 |
TW (Tow width) | 0.376 |
TT (Tow thickness) | 0.093 (VF 60%) |
No. | E11,tow | E22,tow | E33,tow | G12,tow | G13,tow | G23,tow | v12,tow | v13,tow | v23,tow | Em | Gm | vm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 130.90 | 14.30 | 14.30 | 3.94 | 3.94 | 2.64 | 0.317 | 0.317 | 0.275 | 2.56 | 0.95 | 0.366 |
2 | 149.55 | 12.91 | 12.91 | 3.61 | 3.61 | 2.41 | 0.301 | 0.301 | 0.234 | 2.51 | 866.32 | 0.334 |
⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ | ⁞ |
999 | 150.47 | 14.13 | 14.13 | 3.80 | 3.80 | 2.56 | 0.310 | 0.310 | 0.260 | 2.56 | 0.92 | 0.359 |
1000 | 147.37 | 13.24 | 13.24 | 3.44 | 3.44 | 2.32 | 0.324 | 0.324 | 0.258 | 2.44 | 0.83 | 0.353 |
VF 40% | VF 50% | VF 60% | VF 70% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average | Std. Dev | COV | Average | Std. Dev | COV | Average | Std. Dev | COV | Average | Std. Dev | COV | |
E11,eq,macro | 21.23 | 0.698 | 0.033 | 24.88 | 0.828 | 0.033 | 26.70 | 0.877 | 0.033 | 29.67 | 0.969 | 0.033 |
E33,eq,macro | 5.183 | 0.368 | 0.071 | 6.00 | 0.432 | 0.072 | 7.04 | 0.501 | 0.071 | 8.64 | 0.601 | 0.070 |
G12,eq,macro | 1.90 | 0.091 | 0.048 | 2.14 | 0.101 | 0.047 | 2.35 | 0.111 | 0.047 | 2.56 | 0.121 | 0.047 |
G23,eq,macro | 1.29 | 0.062 | 0.048 | 1.48 | 0.071 | 0.048 | 1.72 | 0.081 | 0.047 | 2.09 | 0.097 | 0.046 |
v12,eq,macro | 0.096 | 0.006 | 0.063 | 0.087 | 0.006 | 0.069 | 0.082 | 0.006 | 0.073 | 0.075 | 0.006 | 0.080 |
v23,eq,macro | 0.407 | 0.027 | 0.066 | 0.386 | 0.025 | 0.065 | 0.364 | 0.023 | 0.063 | 0.342 | 0.021 | 0.061 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.-W.; Jeon, B.-W.; Choi, C.-W.; Kang, K.-W. Multi-Scale Probabilistic Analysis for the Mechanical Properties of Plain Weave Carbon/Epoxy Composites Using the Homogenization Technique. Appl. Sci. 2020, 10, 6542. https://doi.org/10.3390/app10186542
Jin J-W, Jeon B-W, Choi C-W, Kang K-W. Multi-Scale Probabilistic Analysis for the Mechanical Properties of Plain Weave Carbon/Epoxy Composites Using the Homogenization Technique. Applied Sciences. 2020; 10(18):6542. https://doi.org/10.3390/app10186542
Chicago/Turabian StyleJin, Ji-Won, Byung-Wook Jeon, Chan-Woong Choi, and Ki-Weon Kang. 2020. "Multi-Scale Probabilistic Analysis for the Mechanical Properties of Plain Weave Carbon/Epoxy Composites Using the Homogenization Technique" Applied Sciences 10, no. 18: 6542. https://doi.org/10.3390/app10186542
APA StyleJin, J.-W., Jeon, B.-W., Choi, C.-W., & Kang, K.-W. (2020). Multi-Scale Probabilistic Analysis for the Mechanical Properties of Plain Weave Carbon/Epoxy Composites Using the Homogenization Technique. Applied Sciences, 10(18), 6542. https://doi.org/10.3390/app10186542