Highly Sensitive Complicated Spectrum Analysis in Micro-Bubble Resonators Using the Orthogonal Demodulation Pound–Drever–Hall Technique
Abstract
:Featured Application
Abstract
1. Introduction
2. Principle and Setup
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Lu, Q.J.; Liu, S.; Wu, X.; Liu, L.; Xu, L.Y. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators. Opt. Lett. 2016, 41, 1736–1739. [Google Scholar] [CrossRef]
- Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J. Label-free, single-molecule detection with optical microcavities. Science 2007, 317, 783–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.N.; Özdemir, Ş.K.; Zhu, J.G.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 2011, 6, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.W.; Liu, L.Y.; Xu, L. Ultralow sensing limit in optofluidic micro-bottle resonator biosensor by self-referenced differential-mode detection scheme. Appl. Phys. Lett. 2014, 104, 033703. [Google Scholar] [CrossRef]
- Li, M.; Wu, X.; Liu, L.Y.; Fan, X.D.; Xu, L. Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection. Anal. Chem. 2013, 85, 9328–9332. [Google Scholar] [CrossRef]
- Kippenberg, T.J.; Vahala, K.J. Cavity opto-mechanics. Opt. Express 2007, 15, 17172–17205. [Google Scholar] [CrossRef]
- Lu, Q.J.; Wu, X.; Liu, L.Y.; Xu, L. Mode-selective lasing in high-Q polymer microbottle resonators. Opt. Express 2015, 23, 22740–22745. [Google Scholar] [CrossRef]
- Liu, W.; Li, M.; Guzzon, R.S.; Norberg, E.J.; Parker, J.S.; Lu, M.; Coldren, L.A.; Yao, J. A fully reconfigurable photonic integrated signal processor. Nat. Photonics 2016, 10, 190–195. [Google Scholar] [CrossRef]
- Swaim, J.D.; Knittel, J.; Bowen, W.P. Detection of nanoparticles with a frequency locked whispering gallery mode microresonator. Appl. Phys. Lett. 2013, 102, 183106. [Google Scholar] [CrossRef] [Green Version]
- Sumetsky, M.; Dulashko, Y.; Windeler, R. Optical microbubble resonator. Opt. Lett. 2010, 35, 898–900. [Google Scholar] [CrossRef]
- Madugani, R.; Yang, Y.; Le, V.H.; Ward, J.M.; Chormaic, S.N. Linear laser tuning using a pressure-sensitive microbubble resonator. IEEE Photon. Technol. Lett. 2016, 28, 1134–1137. [Google Scholar] [CrossRef]
- Peng, B.; Özdemir, Ş.K.; Chen, W.J.; Nori, F.; Yang, L. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun. 2014, 5, 5082. [Google Scholar] [CrossRef]
- Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 1961, 124, 1866. [Google Scholar] [CrossRef]
- Li, B.B.; Xiao, Y.F.; Zou, C.L.; Liu, Y.C.; Jiang, X.F.; Chen, Y.L.; Li, Y.; Gong, Q. Experimental observation of Fano resonance in a single whispering-gallery microresonator. Appl. Phys. Lett. 2011, 98, 021116. [Google Scholar] [CrossRef]
- Kelly, W.R.; Dutton, Z.; Schlafer, J.; Mookerji, B.; Ohki, T.A.; Kline, J.S.; Pappas, D.P. Direct observation of coherent population trapping in a superconducting artificial atom. Phys. Rev. Lett. 2010, 104, 163601. [Google Scholar] [CrossRef] [Green Version]
- Boller, K.J.; Imamoğlu, A.; Harris, S.E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 1991, 66, 2593. [Google Scholar] [CrossRef] [Green Version]
- Autler, S.H.; Townes, C.H. Stark Effect in Rapidly Varying Fields. Phys. Rev. 1955, 100, 703–722. [Google Scholar] [CrossRef]
- Liew, S.F.; Red-ding, B.; Ge, L.; Solomon, G.S.; Cao, H. Active control of emission directionality of semiconductor microdisk lasers. Appl. Phys. Lett. 2014, 104, 231108. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.N.M.; Ding, M.; Murugan, G.S.; Zervas, M.N. Microtaper Fiber Excitation Effects in Bottle Microresonators. Laser Resonators, Microresonators, and Beam Control XV; International Society for Optics and Photonics: San Francisco, CA, USA, 2013; Volume 8600, p. 860020. [Google Scholar]
- Murugan, G.S.; Wilkinson, J.S.; Zervas, M.N. Selective excitation of whispering gallery modes in a novel bottle microresonator. Opt. Express 2009, 17, 11916–11925. [Google Scholar] [CrossRef] [PubMed]
- Savchenkov, A.; Matsko, A.; Strekalov, D.; Ilchenko, V.; Maleki, L. Mode filtering in optical whispering gallery resonators. Electron. Lett. 2005, 41, 1. [Google Scholar] [CrossRef]
- Ding, M.; Senthil Murugan, G.; Brambilla, G.; Zervas, M.N. Whispering gallery mode selection in optical bottle microresonators. Appl. Phys. Lett. 2012, 100, 081108. [Google Scholar] [CrossRef]
- Gallinet, B.; Martin, O.J. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B 2011, 83, 235427. [Google Scholar] [CrossRef] [Green Version]
- Drever, R.; Hall, J.L.; Kowalski, F.; Hough, J.; Ford, G.; Munley, A.; Ward, H. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 1983, 31, 97–105. [Google Scholar] [CrossRef]
- Black, E.D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhang, J.J.; Ma, H.L.; Jin, Z.H. High-frequency Pound-Drever-Hall sensing of a short and high-finesse fiber ring resonator. In Proceedings of the 2016 15th International Conference on Optical Communications and Networks (ICOCN), Hangzhou, China, 24–27 September 2016; pp. 1–3. [Google Scholar]
- Barnes, J.; Li, S.J.; Goyal, A.; Abolmaesumi, P.; Mousavi, P.; Loock, H.-P. Broadband Vibration Detection in Tissue Phantoms Using a Fiber Fabry-Perot Cavity. IEEE Trans. Biomed. Eng. 2018, 65, 921–927. [Google Scholar] [CrossRef]
- Sanders, G.A.; Prentiss, M.G.; Ezekiel, S. Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity. Opt. Lett. 1981, 6, 569–571. [Google Scholar] [CrossRef]
- Hu, J.L.; Liu, S.; Wu, X.; Liu, L.Y.; Xu, L. Orthogonal Demodulation Pound-Drever-Hall Technique for Ultra-Low Detection Limit Pressure Sensing. Sensors 2019, 19, 3223. [Google Scholar] [CrossRef] [Green Version]
- Juan, S.; Mingxing, J.; Fei, J. Pound-Drever-Hall laser frequency locking technique based on orthogonal demodulation. Optik 2018, 168, 348–354. [Google Scholar] [CrossRef]
- Gorodetsky, M.L.; Ilchenko, V.S. Optical microsphere resonators: Optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 1999, 16, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.H.; Zou, C.L.; Xiao, Y.F.; Cui, J.M.; Han, Z.F.; Guo, G.C. Modified transmission spectrum induced by two-mode interference in a single silica microsphere. J. Phys. B 2009, 42, 215401. [Google Scholar] [CrossRef]
Fitting Object | q1 | q2 | ∆λd/pm | g/MHz | FCOD 3 | RCOD 4 |
---|---|---|---|---|---|---|
Figure 2b Res. 1 (g = 0) | 1.45 × 106 | 4.58 × 105 | 0.346 | 0 | 0.980 | 0.981 |
Figure 2b Res. (g ≠ 0) | 3.50 × 105 | 1.24 × 104 | 9.39 | 1.19 × 104 | 0.998 | 0.937 |
Figure 2d IQ. 2 (g = 0) | 1.46 × 106 | 4.80 × 105 | 0.340 | 0 | 0.998 | 0.968 |
Figure 2d IQ. (g ≠ 0) | 5.10 × 105 | 7.54 × 104 | 3.00 | 3.76 × 103 | 0.996 | 0.790 |
Figure 2f IQ. | 1.19 × 106 | 5.72 × 105 | 2.44 | 0 | 0.956 | 0.862 |
Figure 2f Res. | 1.48 × 106 | 4.62 × 105 | 2.42 | 0 | 1.00 | 0.863 |
Fitting Object | q1 | q2 | ∆λd/pm | g/MHz | κT/MHz | FCOD 3 | RCOD 4 |
---|---|---|---|---|---|---|---|
Figure 3a Res. 1 (g ≠ 0) | 1.08 × 106 | 4.09 × 104 | 173 | 1.20 × 104 | 1.31 × 104 | 0.997 | 0.997 |
Figure 3a Res. (g = 0) | 9.22 × 105 | 6.10 × 105 | 0.390 | 0 | 309 | 0.991 | 0.645 |
Figure 3b IQ. 2 (g ≠ 0) | 1.06 × 106 | 4.08 × 104 | 173 | 1.20 × 104 | 1.31 × 104 | 0.998 | 0.994 |
Figure 3b IQ. (g = 0) | 1.80 × 106 | 9.78 × 105 | 0.259 | 0 | 260 | 0.999 | 0.893 |
Fitting Object | q1 | q2 | ∆λd/pm | g/GHz | κT/MHz | FCOD 3 | RCOD 4 |
---|---|---|---|---|---|---|---|
Figure 4a Res. 1 (0.229 bar) | 1.03 × 106 | 1.67 × 106 | 1.41 | 1.43 | 208 | 0.996 | 0.933 |
Figure 4a IQ. 2 | 9.00 × 105 | 1.64 × 106 | 1.41 | 1.34 | 279 | 0.985 | 0.983 |
Figure 4b Res. (0.327 bar) | 9.69 × 105 | 1.71 × 106 | 1.24 | 1.37 | 249 | 0.997 | - |
Figure 4b Res. (0.424 bar) | 9.71 × 106 | 1.79 × 106 | 1.23 | 1.31 | 263 | 0.998 | - |
Figure 4b Res. (0.522 bar) | 9.71 × 106 | 1.87 × 106 | 1.15 | 1.25 | 276 | 0.998 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Liu, S.; Li, B.; Guo, Z.; Wu, X.; Liu, L.; Xu, L. Highly Sensitive Complicated Spectrum Analysis in Micro-Bubble Resonators Using the Orthogonal Demodulation Pound–Drever–Hall Technique. Appl. Sci. 2020, 10, 6256. https://doi.org/10.3390/app10186256
Hu J, Liu S, Li B, Guo Z, Wu X, Liu L, Xu L. Highly Sensitive Complicated Spectrum Analysis in Micro-Bubble Resonators Using the Orthogonal Demodulation Pound–Drever–Hall Technique. Applied Sciences. 2020; 10(18):6256. https://doi.org/10.3390/app10186256
Chicago/Turabian StyleHu, Jinliang, Sheng Liu, Biao Li, Zhihe Guo, Xiang Wu, Liying Liu, and Lei Xu. 2020. "Highly Sensitive Complicated Spectrum Analysis in Micro-Bubble Resonators Using the Orthogonal Demodulation Pound–Drever–Hall Technique" Applied Sciences 10, no. 18: 6256. https://doi.org/10.3390/app10186256
APA StyleHu, J., Liu, S., Li, B., Guo, Z., Wu, X., Liu, L., & Xu, L. (2020). Highly Sensitive Complicated Spectrum Analysis in Micro-Bubble Resonators Using the Orthogonal Demodulation Pound–Drever–Hall Technique. Applied Sciences, 10(18), 6256. https://doi.org/10.3390/app10186256