Analyse Success Model of Split Time and Cut-Off Point Values of Physical Demands to Keep Category in Semi-Professional Football Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Milsom, J.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of seasonal-long physical load in soccer players with different starting status from the English Premier League: Implications for maintaining squad physical fitness. Int. J. Sports Physiol. Perform. 2016, 11, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Bradley, P.S.; Archer, D.T.; Hogg, B.; Schuth, G.; Bush, M.; Carling, C.; Barnes, C. Tier-specific evolution of match performance characteristics in the English Premier League: It’s getting tougher at the top. J. Sports Sci. 2016, 34, 980–987. [Google Scholar] [CrossRef]
- Bush, M.; Barnes, C.; Archer, D.T.; Hogg, B.; Bradley, P.S. Evolution of match performance parameters for various playing positions in the English Premier League. Hum. Mov. Sci. 2015, 39, 1–11. [Google Scholar] [CrossRef]
- Carling, C.; Le Gall, F.; Dupont, G. Analysis of repeated high-intensity running performance in professional soccer. J. Sports Sci. 2012, 30, 325–336. [Google Scholar] [CrossRef]
- Rampinini, E.; Sassi, A.; Morelli, A.; Mazzoni, S.; Fanchini, M.; Coutts, A.J. Repeated-sprint ability in professional and amateur soccer players. Appl. Physiol. Nutr. Metab. 2009, 34, 1048–1054. [Google Scholar] [CrossRef]
- Vigne, G.; Gaudino, C.; Rogowski, I.; Alloatti, G.; Hautier, C. Activity profile in elite Italian soccer team. Int. J. Sports Med. 2010, 31, 304–310. [Google Scholar] [CrossRef]
- Di Salvo, V.; Pigozzi, F.; González-Haro, C.; Laughlin, M.; De Witt, J. Match performance comparison in top English soccer leagues. Int. J. Sports Med. 2013, 34, 526–532. [Google Scholar] [CrossRef]
- Folgado, H.; Duarte, R.; Fernandes, O.; Sampaio, J. Competing with lower level opponents decreases intra-team movement synchronization and time-motion demands during pre-season soccer matches. PLoS ONE 2014, 9, e0097145. [Google Scholar] [CrossRef]
- Tierney, P.J.; Young, A.; Clarke, N.D.; Duncan, M.J. Match play demands of 11 versus 11 professional football using Global Positioning System tracking: Variations across common playing formations. Hum. Mov. Sci. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Garcia-Unanue, J.; Perez-Gomez, J.; Gimenez, J.-V.; Felipe, J.L.; Gomez-Pomares, S.; Gallardo, L.; Sanchez-Sanchez, J. Influence of contextual variables and the pressure to keep category on physical match performance in soccer players. PLoS ONE 2018, 13, e0204256. [Google Scholar] [CrossRef]
- Gomez-Piqueras, P.; Gonzalez-Villora, S.; Castellano, J.; Teoldo, I. Relation between the physical demands and success in professional soccer players. J. Hum. Sport Exerc. 2019, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chawla, S.; Estephan, J.; Gudmundsson, J.; Horton, M. Classification of passes in football matches using spatiotemporal data. ACM Tsas. Spat. Algorithms Syst. 2017, 3, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Clemente, F.M.; Couceiro, M.S.; Martins, F.M.L.; Mendes, R.S. Using network metrics in soccer: A macro-analysis. J. Hum. Kinet. 2015, 45, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, L.; Cintia, P. Quantifying the relation between performance and success in soccer. Adv. Complex. Syst. 2018, 21, 1750014. [Google Scholar] [CrossRef] [Green Version]
- Castellano, J.; Casamichana, D. What are the differences between first and second divisions of Spanish football teams? Int. J. Perf. Anal. Sport 2015, 15, 135–146. [Google Scholar] [CrossRef]
- Mohr, M.; Krustrup, P.; Andersson, H.; Kirkendal, D.; Bangsbo, J. Match activities of elite women soccer players at different performance levels. J. Strength Cond. Res. 2008, 22, 341–349. [Google Scholar] [CrossRef]
- Morgans, R.; Orme, P.; Anderson, L.; Drust, B. Principles and practices of training for soccer. J. Sport Health Sci. 2014, 3, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Schumaker, R.P.; Solieman, O.K.; Chen, H. Sports Data Mining; Springer: Boston, MA, USA, 2010; Volume 26, 138p. [Google Scholar]
- O’Reilly, N.J.; Knight, P. Knowledge management best practices in national sport organisations. Int. J. Sport Manag. Mark. 2007, 2, 264–280. [Google Scholar] [CrossRef]
- Haghighat, M.; Rastegari, H.; Nourafza, N. A review of data mining techniques for result prediction in sports. Adv. Comput. Sci. 2013, 2, 7–12. [Google Scholar]
- Quinlan, J.R. C4. 5: Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014; 302p. [Google Scholar]
- Dietterich, T.G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Sarmento, H.; Clemente, F.M.; Harper, L.D.; Costa, I.T.D.; Owen, A.; Figueiredo, A.J. Small sided games in soccer—A systematic review. Int. J. Perf. Anal. Sport 2018, 18, 693–749. [Google Scholar] [CrossRef]
- Claudino, J.G.; de Oliveira Capanema, D.; de Souza, T.V.; Serrão, J.C.; Pereira, A.C.M.; Nassis, G.P. Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: A systematic review. Sports Med. Open 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.; Fenton, N.E.; Neil, M. Predicting football results using Bayesian nets and other machine learning techniques. Knowl. Based Syst. 2006, 19, 544–553. [Google Scholar] [CrossRef]
- Young, C.M.; Luo, W.; Gastin, P.; Tran, J.; Dwyer, D.B. The relationship between match performance indicators and outcome in Australian Football. J. Sci. Med. Sport 2019, 22, 467–471. [Google Scholar] [CrossRef]
- Maneiro, R.; Casal, C.A.; Ardá, A.; Losada, J.L. Application of multivariant decision tree technique in high performance football: The female and male corner kick. PLoS ONE 2019, 14, e0212549. [Google Scholar] [CrossRef]
- Memmert, D.; Lemmink, K.A.; Sampaio, J. Current approaches to tactical performance analyses in soccer using position data. Sports Med. 2017, 47, 1–10. [Google Scholar] [CrossRef]
- Baboota, R.; Kaur, H. Predictive analysis and modelling football results using machine learning approach for English Premier League. Int. J. Forecast. 2019, 35, 741–755. [Google Scholar] [CrossRef]
- Giménez, J.V.; Jiménez-Linares, L.; Leicht, A.S.; Gómez, M.A. Predictive modelling of the physical demands during training and competition in professional soccer players. J. Sci. Med. Sport Title 2020, 23, 603–608. [Google Scholar] [CrossRef]
- Gomez, M.-A.; Lago-Peñas, C.; Owen, L.A. The influence of substitutions on elite soccer teams’ performance. Int. J. Perf. Anal. Sport 2016, 16, 553–568. [Google Scholar] [CrossRef]
- Casamichana, D.; Castellano, J.; Calleja-Gonzalez, J.; San Román, J.; Castagna, C. Relationship between indicators of training load in soccer players. J. Strength Cond. Res. 2013, 27, 369–374. [Google Scholar] [CrossRef]
- Cunniffe, B.; Proctor, W.; Baker, J.S.; Davies, B. An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. J. Strength Cond. Res. 2009, 23, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Szmidt, E.; Kacprzyk, J. Intuitionistic fuzzy sets in group decision making. Notes IFS 1996, 2, 11–14. [Google Scholar]
- Thomas, G.; Fernández, W. Success in IT projects: A matter of definition? Int. J. Proj. Manag. 2008, 26, 733–742. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Nevo, D.; Ritov, Y.A. Around the goal: Examining the effect of the first goal on the second goal in soccer using survival analysis methods. J. Quant. Anal. Sports 2013, 9, 165–177. [Google Scholar] [CrossRef] [Green Version]
- O’Donoghue, P.; Robinson, G. Score-line effect on work-rate in English FA Premier League soccer. Int. J. Perf. Anal. Spor. 2016, 16, 910–923. [Google Scholar] [CrossRef] [Green Version]
- García-Rubio, J.; Gómez, M.Á.; Lago-Peñas, C.; Ibáñez, J.S. Effect of match venue, scoring first and quality of opposition on match outcome in the UEFA Champions League. Int. J. Perf. Anal. Sport 2015, 15, 527–539. [Google Scholar] [CrossRef]
- Taylor, J.B.; Mellalieu, S.D.; James, N.; Shearer, D.A. The influence of match location, quality of opposition, and match status on technical performance in professional association football. J. Sports Sci. 2008, 26, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Lago, C. The influence of match location, quality of opposition, and match status on possession strategies in professional association football. J. Sports Sci. 2009, 27, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Lago-Peñas, C.; Lago-Ballesteros, J.; Dellal, A.; Gómez, M. Game-related statistics that discriminated winning, drawing and losing teams from the Spanish soccer league. J. Sci. Med. Sport 2010, 9, 288. [Google Scholar]
- Reilly, T. Motion analysis and physiological demands. In Science and Soccer; Williams, A., Reilly, T., Eds.; Routledge: Abingdon, UK, 2003; pp. 67–80. [Google Scholar]
- Ostojic, S.M.; Mazic, S. Effects of a carbohydrate-electrolyte drink on specific soccer tests and performance. J. Sports Sci. Med. 2002, 1, 47. [Google Scholar]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.; Rees, G.; Kingsley, M.I. Technical demands of soccer match play in the English championship. J. Strength Cond. Res. 2013, 27, 2869–2873. [Google Scholar] [CrossRef] [Green Version]
- Rienzi, E.; Drust, B.; Reilly, T.; Carter, J.E.L.; Martin, A. Investigation of anthropometric and work-rate profiles of elite South American international soccer players. J. Sport Med. Phys. Fit. 2000, 40, 162. [Google Scholar]
- Rampinini, E.; Coutts, A.J.; Castagna, C.; Sassi, R.; Impellizzeri, F. Variation in top level soccer match performance. Int. J. Sports Med. 2007, 28, 1018–1024. [Google Scholar] [CrossRef] [Green Version]
- Di Salvo, V.; Gregson, W.; Atkinson, G.; Tordoff, P.; Drust, B. Analysis of high intensity activity in Premier League soccer. Int. J. Sports Med. 2009, 30, 205–212. [Google Scholar] [CrossRef]
- Glaister, M. Multiple sprint work. Sports Med. 2005, 35, 757–777. [Google Scholar] [CrossRef]
- Spencer, M.; Bishop, D.; Dawson, B.; Goodman, C. Physiological and metabolic responses of repeated-sprint activities. Sports Med. 2005, 35, 1025–1044. [Google Scholar] [CrossRef] [PubMed]
- Vigh-Larsen, J.F.; Dalgas, U.; Andersen, T.B. Position-specific acceleration and deceleration profiles in elite youth and senior soccer players. J. Strength Cond. Res. 2018, 32, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Bradley, P.S.; Di Mascio, M.; Peart, D.; Olsen, P.; Sheldon, B. High-intensity activity profiles of elite soccer players at different performance levels. J. Strength Cond. Res. 2010, 24, 2343–2351. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, S.A.; Krustrup, P.; Bendiksen, M.; Randers, M.B.; Brito, J.; Bangsbo, J.; Jin, Y.; Mohr, M. Caffeine supplementation does not affect match activities and fatigue resistance during match play in young football players. J. Sports Sci. 2014, 32, 1958–1965. [Google Scholar] [CrossRef] [PubMed]
Success | Unsuccess | Defeat | p | η2 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M ± SD | CI95% | M ± SD | CI95% | M ± SD | CI95% | ||||||||||||||||
Distance covered (m) | 0–15 | 1534.85 | ± | 179.35 | 1426.47 | - | 1643.23 | 1560.78 | ± | 192.36 | 1497.55 | - | 1624.00 | 1658.52 | ± | 216.19 | 1593.57 | - | 1723.47 | 0.043 | 0.065 |
15–30 | 1547.12 | ± | 110.58 | 1480.29 | - | 1613.94 | 1537.24 | ± | 181.96 | 1477.43 | - | 1597.05 | 1652.11 | ± | 777.89 | 1418.41 | - | 1885.82 | 0.606 | 0.011 | |
30–45 | 1541.16 | ± | 123.14 | 1466.75 | - | 1615.58 | 1442.35 | ± | 176.41 | 1384.36 | - | 1500.33 | 1563.40 | ± | 196.68 | 1504.31 | - | 1622.49 | 0.010 | 0.094 | |
45–60 | 1477.44 | ± | 154.99 | 1383.78 | - | 1571.10 | 1500.49 | ± | 157.38 | 1448.76 | - | 1552.22 | 1575.25 | ± | 185.52 | 1519.51 | - | 1630.99 | 0.069 | 0.056 | |
60–75 | 1384.82 | ± | 280.54 | 1215.29 | - | 1554.35 | 1440.79 | ± | 165.60 | 1386.36 | - | 1495.22 | 1541.24 | ± | 197.46 | 1481.92 | - | 1600.57 | 0.015 | 0.086 | |
75–90 | 1183.85 | ± | 389.05 | 948.75 | - | 1418.94 | 1415.76 | ± | 175.31 | 1358.13 | - | 1473.38 | 1402.68 | ± | 184.70 | 1347.19 | - | 1458.18 | 0.114 | 0.102 | |
Accelerations (n) | 0–15 | 5.15 | ± | 1.91 | 4.00 | - | 6.31 | 5.61 | ± | 2.82 | 4.68 | - | 6.53 | 6.13 | ± | 3.24 | 5.16 | - | 7.11 | 0.504 | 0.015 |
15–30 | 4.31 | ± | 1.38 | 3.48 | - | 5.14 | 5.13 | ± | 2.08 | 4.45 | - | 5.82 | 5.53 | ± | 4.85 | 4.08 | - | 6.99 | 0.555 | 0.013 | |
30–45 | 4.46 | ± | 2.93 | 2.69 | - | 6.23 | 5.13 | ± | 2.88 | 4.19 | - | 6.08 | 5.69 | ± | 2.07 | 5.07 | - | 6.31 | 0.271 | 0.028 | |
45–60 | 4.38 | ± | 2.75 | 2.72 | - | 6.05 | 5.82 | ± | 2.89 | 4.86 | - | 6.77 | 5.11 | ± | 2.46 | 4.37 | - | 5.85 | 0.212 | 0.033 | |
60–75 | 4.08 | ± | 2.25 | 2.72 | - | 5.44 | 5.18 | ± | 2.23 | 4.45 | - | 5.92 | 4.73 | ± | 2.45 | 4.00 | - | 5.47 | 0.322 | 0.024 | |
75–90 | 3.38 | ± | 2.60 | 1.81 | - | 4.96 | 4.82 | ± | 3.17 | 3.77 | - | 5.86 | 4.20 | ± | 2.24 | 3.53 | - | 4.87 | 0.235 | 0.031 | |
Decelerations (n) | 0–15 | 3.08 | ± | 2.43 | 1.61 | - | 4.55 | 2.97 | ± | 2.20 | 2.25 | - | 3.70 | 3.16 | ± | 2.41 | 2.43 | - | 3.88 | 0.939 | 0.001 |
15–30 | 3.54 | ± | 2.44 | 2.07 | - | 5.01 | 3.05 | ± | 1.77 | 2.47 | - | 3.63 | 3.49 | ± | 3.82 | 2.34 | - | 4.64 | 0.772 | 0.006 | |
30–45 | 2.62 | ± | 1.45 | 1.74 | - | 3.49 | 3.18 | ± | 1.84 | 2.58 | - | 3.79 | 3.11 | ± | 2.16 | 2.46 | - | 3.76 | 0.654 | 0.009 | |
45–60 | 2.46 | ± | 1.13 | 1.78 | - | 3.14 | 2.68 | ± | 1.66 | 2.14 | - | 3.23 | 3.38 | ± | 2.17 | 2.73 | - | 4.03 | 0.141 | 0.041 | |
60–75 | 2.15 | ± | 1.68 | 1.14 | - | 3.17 | 2.97 | ± | 1.79 | 2.38 | - | 3.56 | 3.38 | ± | 1.99 | 2.78 | - | 3.98 | 0.116 | 0.045 | |
75–90 | 2.15 | ± | 1.82 | 1.05 | - | 3.25 | 2.32 | ± | 1.77 | 1.73 | - | 2.90 | 2.53 | ± | 1.73 | 2.01 | - | 3.05 | 0.741 | 0.006 | |
Sprints (n) | 0–15 | 2.92 | ± | 2.47 | 1.43 | - | 4.41 | 3.13 | ± | 2.16 | 2.42 | - | 3.84 | 3.38 | ± | 2.23 | 2.71 | - | 4.05 | 0.774 | 0.005 |
15–30 | 2.46 | ± | 2.07 | 1.21 | - | 3.71 | 3.21 | ± | 1.89 | 2.59 | - | 3.83 | 3.62 | ± | 3.03 | 2.71 | - | 4.53 | 0.332 | 0.023 | |
30–45 | 2.85 | ± | 2.15 | 1.54 | - | 4.15 | 3.03 | ± | 1.99 | 2.37 | - | 3.68 | 3.20 | ± | 2.52 | 2.44 | - | 3.96 | 0.868 | 0.003 | |
45–60 | 2.77 | ± | 2.20 | 1.44 | - | 4.10 | 3.21 | ± | 2.47 | 2.40 | - | 4.02 | 3.11 | ± | 2.10 | 2.48 | - | 3.74 | 0.833 | 0.004 | |
60–75 | 2.08 | ± | 1.75 | 1.02 | - | 3.14 | 3.21 | ± | 2.11 | 2.52 | - | 3.90 | 3.69 | ± | 1.99 | 3.09 | - | 4.29 | 0.042 | 0.066 | |
75–90 | 1.08 | ± | 1.12 | 0.40 | - | 1.75 | 3.08 | ± | 2.02 | 2.42 | - | 3.74 | 3.22 | ± | 1.94 | 2.64 | - | 3.81 | 0.002 | 0.129 |
Nodes | Speed Zones (km·h−1) | Sprint (n) | Acceleration and Deceleration (n) | |||
---|---|---|---|---|---|---|
Success (%) | Label G | Success (%) | Label G | Success (%) | Label G | |
1 | 0.93 * | S | 0.67 * | S | 0.00 | D |
2 | 0.67 * | S | 0.00 | D | 0.67 * | S |
3 | 1 * | S | 0.50 † | U | 0.05 | D |
4 | 0.50 † | U | 0.36 | D | 0.51 † | U |
5 | 0.00 | D | 0.00 | D | 0.89 * | S |
6 | 0.64 * | S | 0.83 * | S | 0.75 * | S |
7 | 0.25 | D | 1 * | S | 0.30 | D |
8 | 0.67 * | S | 0.26 | D | 0.55 † | U |
9 | 0.67 * | S | 0.33 * | D | 0.94 * | S |
10 | 0.00 | D | 1 * | S | 0.67 * | S |
11 | 0.00 | D | 0.83 * | S | ||
12 | 0.86 * | S | 0.67 * | S | ||
13 | 0.67 * | S | ||||
14 | 0.67 * | S | ||||
15 | 0.00 | D | ||||
16 | 0.00 | D |
Nodes | Success (%) | Attributes | |
---|---|---|---|
Speed Zones (km/h) | 1 | 0.93 | > 13.5(0–15 min; Z1); >328.1 (75–90 min; Z3); >643.5 (75–90 min; Z2) |
2 | 0.67 | >13.5 (0–15 min; Z1); >328.1 (75–90 min; Z3); ≤643.5 (75–90 min; Z2); > 15.6 (75–90 min; Z1); >523.9 (0–15 min; Z2); >639.1 (30–45 min; Z3); >550.1 (0–15 min; Z2) | |
3 | 1.00 | >13.5 (0–15 min; Z1); >328.1 (75–90 min; Z3); ≤643.5 (75–90 min; Z2); >15.6 (75–90 min; Z1); >523.9 (0–15 min; Z2); >639.1 (30–45 min; Z3); ≤550.1 (0–15 min; Z2) | |
6 | 0.66 | >13.5 (0–15 min; Z1); >328.1 (75–90 min; Z3); ≤643.5 (75–90 min; Z2); >15.6 (75–90 min; Z1); >523.9 (0–15 min; Z2). ≤639.1 (30–45 min; Z3); ≤291.7 (45–60 min; Z4) | |
8 | 0.67 | >13.5 (0–15 min; Z1); >328.1 (75–90 min; Z3); ≤643.5 (75–90 min; Z2); ≤15.6 (75–90 min; Z1); >592.1 (0–15 min; Z2) | |
9 | 0.67 | >13.5 (0–15 min; Z1); >328.1 (75–90 min; Z3); ≤643.5 (75–90 min; Z2); ≤15.6 (75–90 min; Z1); ≤592.1 (0–15 min; Z2); >16.3 (60–75 min; Z1); >198.3 (15–30 min; Ze4) | |
12 | 0.86 | >13.5 (0–15 min; Z1); >328.1 (75–90 min; Z3) | |
13 | 0.67 | ≤13.5 (0–15 min; Z1); >346.9 (75–90 min; Z4) | |
14 | 0.67 | ≤13.5 (0–15 min; Z1); ≤346.9 (75–90 min; Z4); >605.1 (0–15 min; Z2); >593.9 (0–15 min; Z3) | |
Sprint (n) | 1 | 0.67 | >8.5 (75–90 min; Sprint) |
6 | 0.83 | ≤8.5 (75–90 min; Sprint); ≤5.5 (75–90 min; Sprint). ≤8.5 (0–15 min; Sprint); >1.5 (75–90 min; Sprint); ≤0.5 (15–30 min; Sprint) | |
7 | 1.00 | ≤8.5 (75–90 min; Sprint); ≤5.5 (75–90 min; Sprint); ≤8.5 (0–15 min; Sprint); ≤1.5 (75–90 min; Sprint); >4.5 (0–15 min; Sprint) | |
9 | 0.83 | ≤8.5 (75–90 min; Sprint); ≤5.5 (75–90 min; Sprint); 8.5 ≤ (0–15 min; Sprint); >0.5 (45–60 min; Sprint); > 0.5 (60–75 min; Sprint); ≤0.5 (30–45 min; Sprint) | |
10 | 1.00 | ≤8.5 (75–90 min; Sprint); ≤5.5 (75–90 min; Sprint); 8.5 ≤ (0–15 min; Sprint); >0.5 (45–60 min; Sprint); ≤0.5 (60–75 min; Sprint) | |
11 | 0.83 | ≤8.5 (75–90 min; Sprint); ≤5.5 (75–90 min; Sprint); 8.5 ≤ (0–15 min; Sprint); ≤0.5 (45–60 min; Sprint); >1.5 (0–15 min; Sprint) | |
12 | 0.67 | ≤8.5 (75–90 min; Sprint); ≤5.5 (75–90 min; Sprint); 8.5 ≤ (0–15 min; Sprint); ≤0.5 (45–60 min; Sprint); ≤1.5 (0–15 min; Sprint) | |
Acceleration and Deceleration (n) | 2 | 0.67 | >2.5 (30–45 min; Acc); >4.5 (45–60 min; Dec); >7.5 (30–45 min; Acc); ≤ (60–75 min; Dec) |
5 | 0.89 | >2.5 (30–45 min; Acc); ≤4.5 (45–60 min; Dec); >7.5 (45–60 min; Acc); ≤1.5 (75–90 min; Dec) | |
6 | 0.75 | >2.5 (30–45 min; Acc); ≤4.5 (45–60 min; Dec); ≤7.5 (45–60 min; Acc); >5.5 (15–30 min; Dec) | |
9 | 0.94 | ≤2.5 (30–45 min; Acc); ≤2.5 (60–75 min; Dec); >0.5 (45–60 min; Dec). | |
10 | 0.67 | ≤2.5 (30–45 min; Acc); ≤2.5 (60–75 min; Dec); ≤0.5 (45–60 min; Dec). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimenez, J.V.; Jimenez-Linares, L.; Garcia-Unanue, J.; Sanchez-Sanchez, J.; Gallardo, L.; Felipe, J.L. Analyse Success Model of Split Time and Cut-Off Point Values of Physical Demands to Keep Category in Semi-Professional Football Players. Appl. Sci. 2020, 10, 5299. https://doi.org/10.3390/app10155299
Gimenez JV, Jimenez-Linares L, Garcia-Unanue J, Sanchez-Sanchez J, Gallardo L, Felipe JL. Analyse Success Model of Split Time and Cut-Off Point Values of Physical Demands to Keep Category in Semi-Professional Football Players. Applied Sciences. 2020; 10(15):5299. https://doi.org/10.3390/app10155299
Chicago/Turabian StyleGimenez, Jesus Vicente, Luis Jimenez-Linares, Jorge Garcia-Unanue, Javier Sanchez-Sanchez, Leonor Gallardo, and Jose Luis Felipe. 2020. "Analyse Success Model of Split Time and Cut-Off Point Values of Physical Demands to Keep Category in Semi-Professional Football Players" Applied Sciences 10, no. 15: 5299. https://doi.org/10.3390/app10155299
APA StyleGimenez, J. V., Jimenez-Linares, L., Garcia-Unanue, J., Sanchez-Sanchez, J., Gallardo, L., & Felipe, J. L. (2020). Analyse Success Model of Split Time and Cut-Off Point Values of Physical Demands to Keep Category in Semi-Professional Football Players. Applied Sciences, 10(15), 5299. https://doi.org/10.3390/app10155299