The Synthesis and Effect of Silver Nanoparticles on the Adsorption of Cu2+ from Aqueous Solutions
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the C. arvensis Leaf Extract
2.3. Synthesis of the AgNPs
2.4. Preparation of the Test Solution
2.5. AgNPs Characterization
3. Results and Discussion
3.1. Characterization of the Adsorbent
3.2. Effect of the AgNPs Dosage
3.3. Effect of the pH
3.4. Effect of the Contact Time
3.5. Effects of the Cu2+ Concentration at 298 and 323 K
3.6. Kinetic Models
3.7. Adsorption Isotherm Models
3.8. Thermodynamic Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mustapha, S.; Shuaib, D.T.; Ndamitso, M.M.; Etsuyankpa, M.B.; Sumaila, A.; Mohammed, U.M.; Nasirudeen, M.B. Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Appl. Water Sci. 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Hoslett, J.; Ghazal, H.; Ahmad, D.; Jouhar, H. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Sci. Total Environ. 2019, 673, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Zafar, S.; Zafar, A. Biosynthesis and Characterization of Silver Nanoparticles Using Phoenix dactylifera Fruits Extract and their In Vitro Antimicrobial and Cytotoxic Effects. Open Biotechnol. J. 2019, 13, 37–46. [Google Scholar] [CrossRef]
- Gavamukulya, Y.; Maina, E.N.; Wamunyokoli, F.; Meroka, A.M.; Madivoli, E.S.; El-Shemy, H.A.; Magoma, G. Synthesis and Characterization of Silver Nanoparticles from Ethanolic Extracts of Leaves of Annona muricata: A Green Nanobiotechnology Approach. Biotechnol. J. Int. 2019, 4, 1–18. [Google Scholar] [CrossRef]
- Yang, I.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chand, K.; Cao, D.; Fouad, D.; Shah, A.H.; Dayo, A.; Zhu, K.; Lakhan, M.N.; Mehdi, G.; Dong, S. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem. 2020. [Google Scholar] [CrossRef]
- Dila, N.N.; Sadeghi, M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J. Hazard. Mater. 2018, 351, 38–53. [Google Scholar] [CrossRef]
- Ahmed, R.H.; Mustafa, D.E. Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. Int. Nano Lett. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, H.; Zafar, A.; Rasheed, M.N.; Ali, Z.; Mehmood, K.; Mazher, A.; Hasan, M.; Mahmood, N. Synthesis of silver anoparticles using Fagonia cretica and their antimicrobial activities. Nanoscale Adv. 2019, 1, 1707–1713. [Google Scholar] [CrossRef] [Green Version]
- Jogaiah, S.; Kurjogi, M.; Abdelrahman, M.; Hanumanthappa, N.; Tran, L.P. Ganoderma applanatum-mediated green synthesis of silver nanoparticles: Structural characterization, and in vitro and in vivo biomedical and agrochemical properties. Arab. J. Chem. 2019, 12, 1108–1120. [Google Scholar] [CrossRef]
- Okafor, F.; Janen, A.; Kukhtareva, T.; Edwards, V.; Curley, M. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity. Int. J. Environ. Res. Public Health 2013, 10, 5221–5238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gade, A.; Gaikwad, S.; Duran, N.; Rai, M. Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol. Appl. Biochem. 2013, 60, 482–493. [Google Scholar] [CrossRef]
- Devi, L.S.; Joshi, S.R. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J. Microsc. Ultrastruct. 2015, 3, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. 2016, 58, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Uzunoglu, D.; Gurel, N.; Ozkaya, N.; Ozer, A. The single batch biosorption of copper(II) ions on Sargassum acinarum. Desalin. Water Treat. 2014, 52, 1514–1523. [Google Scholar] [CrossRef]
- Johnsona, A.S.; Obota, I.B.; Ukponga, U.S. Green synthesis of silver nanoparticles using Artemisia annua and Sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials. J. Mater. Environ. Sci. 2014, 5, 899–906. [Google Scholar]
- Yu, C.; Tang, J.; Liu, X.; Ren, X.; Zhen, M.; Wang, L. Green Biosynthesis of Silver Nanoparticles Using Eriobotrya japonica (Thunb.) Leaf Extract for Reductive Catalysis. Materials 2019, 12, 189. [Google Scholar] [CrossRef] [Green Version]
- Sithara, R.; Selvakumar, P.; Arun, C.; Anandan, S.; Sivashanmugam, P. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. J. Adv. Res. 2017, 8, 561–568. [Google Scholar] [CrossRef]
- Bhuvaneswari, T.S.; Thirugnanam, T.; Thirumurugan, V. Phytomediated synthesis of silver nanoparticles using Cassia auriculata L.: Evaluation of antibacterial and antifungal activity. Asian J. Pharm. Pharmacol. 2019, 5, 326–331. [Google Scholar] [CrossRef]
- Al-Senani, G.M. Synthesis of ZnO-NPs Using a Convolvulus arvensis Leaf Extract and Proving Its E_ciency as an Inhibitor of Carbon Steel Corrosion. Materials 2020, 13, 890. [Google Scholar] [CrossRef] [Green Version]
- Al-Snafi, A.E. The chemical constituents and pharmacological effects of Convolvulus arvensis and Convolvulus scammonia—A review. IOSR J. Pharm. 2016, 6, 64–75. [Google Scholar]
- Torres-Caban, R.; Vega-Olivencia, C.A.; Alamo-Nole, L.; Morales-Irizarry, D.; Roman-Velazquez, F.; Mina-Camilde, N. Removal of Copper fromWater by Adsorption with Calcium-Alginate/Spent-Coffee-Grounds Composite Beads. Materials 2019, 12, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shi, X.; Ma, L.; Pang, X.; Li, L. Preparation of Chitosan Stacking Membranes for Adsorption of Copper Ions. Polymers 2019, 11, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbuDalo, M.A.; Al-Mheidat, I.R.; Al-Shurafat, A.W.; Grinham, C.; Oyanedel-Craver, V. Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. PeerJ 2019, 7, e6413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhargava, S.; Uma, V. Rapid extraction of Cu(II) heavy metal from industrial waste water by using silver nanoparticles anchored with novel Schiff bas. Sep. Sci. Technol. 2019, 54, 1182–1193. [Google Scholar] [CrossRef]
- Azzama, E.M.S.; Eshaqa, G.; Rabiea, A.M.; Bakra, A.A.; Abd-Elaala, A.A.; El Metwallyb, A.E.; Tawfika, S.M. Preparation and characterization of chitosan-clay nanocomposites forthe removal of Cu(II) from aqueous solution. Int. J. Biol. Macromol. 2016, 89, 507–517. [Google Scholar] [CrossRef]
- Benzaoui, T.; Selatnia, A.; Djabali, D. Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorpt. Sci. Technol. 2018, 36, 114–129. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Kadhi, N.S. Studies on Adsorption of Fluorescein Dye from Aqueous Solutions Using Wild Herbs. Int. J. Anal. Chem. 2020, 1–9. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Fawzan, F.F. Study on Adsorption of Cu and Ba from Aqueous Solutions Using Nanoparticles of Origanum (OR) and Lavandula (LV). Bioinorg. Chem. Appl. 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Neto, V.O.S.; Oliveira, A.G.; Teixeira, R.N.P.; Silva, M.A.A.; Freire, P.T.C.; Keukeleire, D.D.; Nascimento, R.F. Use of coconut bagasse as alternative adsorbent for separation of copper(II) ions from aqueous solutions: Isotherms, kinetics, and thermodynamic studies. BioResources 2011, 6, 3376–3395. [Google Scholar]
- Aslan, S.; Yildiz, S.; Ozturk, M. Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dried activated sludge biomass. Pol. J. Chem. Technol. 2018, 20, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Al-Senani, G.M.; Al-Fawzan, F.F. Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs. Egypt. J. Aquat. Res. 2018, 44, 187–194. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Kyzas, G.Z. Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq. 2016, 218, 174–185. [Google Scholar] [CrossRef]
- Sivaa, S.; Sudharsanb, S.; SayeeKannan, R. Selective Co (II) Removal from Aqueous Media by Immobilizing the Silver Nanoparticles within a Polymer-Matrix through Formaldehyde Cross Linking Agent. RSC Adv. 2015, 5, 23340–23349. [Google Scholar] [CrossRef]
- Ksakas, A.; Tanji, K.; El Bali, B.; Taleb, M.; Kherbeche, A. Removal of Cu (II) Ions from Aqueous Solution by Adsorption Using Natural Clays: Kinetic and Thermodynamic Studies. J. Mater. Environ. Sci. 2018, 9, 1075–1085. [Google Scholar]
Kinetic Models | Adsorbent | |
---|---|---|
10 mg/L | 50 mg/L | |
qe,exp mg/g | 2.278 | 9.225 |
Pseudo-First-Order | ||
qe,cal mg/g | 1.401 | 6.391 |
K1, min−1 | 0.031 | 0.031 |
R2 | 0.996 | 0.945 |
Pseudo-Second-Order | ||
qe,cal mg/g | 2.470 | 10.823 |
K2, g/mg min | 0.033 | 0.004 |
R2 | 0.999 | 0.984 |
Intraparticle Diffusion | ||
Step 1 | ||
Kipd, mg/g.min1/2 | 0.149 | 1.419 |
C, mg/g | 0.898 | 2.437 |
R2 | 1 | 1 |
Step 2 | ||
Kipd, mg/g.min1/2 | 0.024 | 0.074 |
C, mg/g | 1.979 | 8.259 |
R2 | 0.932 | 0.975 |
Liquid Film Diffusion | ||
Klfd, min−1 | 0.031 | 0.031 |
C, mg/g | 0.487 | 0.368 |
R2 | 0.996 | 0.945 |
Temperature | Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | RL | R2 | KF (mg/g) (L/mg)1/n | n | R2 | |
298 K | 12.092 | 0.243 | 0.254 | 0.998 | 2.585 | 1.883 | 0.980 |
323 K | 9.980 | 0.135 | 0.426 | 0.996 | 1.517 | 1.807 | 0.959 |
ΔG° (kJ/mol) | ΔH° (KJ/mol) | ΔS° (J/mol K) | |
---|---|---|---|
298 K | 323 K | ||
−33.850 | −32.395 | −18.803 | 50.493 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Senani, G.M.; Al-Kadhi, N. The Synthesis and Effect of Silver Nanoparticles on the Adsorption of Cu2+ from Aqueous Solutions. Appl. Sci. 2020, 10, 4840. https://doi.org/10.3390/app10144840
Al-Senani GM, Al-Kadhi N. The Synthesis and Effect of Silver Nanoparticles on the Adsorption of Cu2+ from Aqueous Solutions. Applied Sciences. 2020; 10(14):4840. https://doi.org/10.3390/app10144840
Chicago/Turabian StyleAl-Senani, Ghadah M., and Nada Al-Kadhi. 2020. "The Synthesis and Effect of Silver Nanoparticles on the Adsorption of Cu2+ from Aqueous Solutions" Applied Sciences 10, no. 14: 4840. https://doi.org/10.3390/app10144840
APA StyleAl-Senani, G. M., & Al-Kadhi, N. (2020). The Synthesis and Effect of Silver Nanoparticles on the Adsorption of Cu2+ from Aqueous Solutions. Applied Sciences, 10(14), 4840. https://doi.org/10.3390/app10144840