Underwater Optical Path Loss after Passage of a Tropical Storm
Abstract
:1. Introduction
2. Selection of Typhoon-Influenced Area
3. IOPs with and without Typhoon Passage
4. Two-Dimensional RTE
5. Effect of Super Typhoon Guchol’s Passage
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200800 nm). Appl. Opt. 1981, 20, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Lanbo, L.; Shengli, Z.; Jun-Hong, C. Prospects and problems of wireless communication for underwater sensor networks. Wireless Commun. Mobile Comput. 2008, 8, 977–994. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016. [Google Scholar] [CrossRef]
- Choudhary, A.; Jagadeesh, V.K. PMuthuchidambaranathan, Pathloss Analysis of NLOS underwater Wireless Optical Communication Channel. In Proceedings of the International Conference on Electronics and Communication Systems, Marseille, France, 13–14 February 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Hou, W.; Jarosz, E.; Woods, S.; Goode, W.; Weidemann, A. Impacts of underwater turbulence on acoustical and optical signals and their linkage. Opt. Exp. 2013, 21, 4367–4375. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.C.; Fan, C.W. Underwater optical detection after passage of tropical storm. J. Appl. Remote Sens. 2019, 13, 047502. [Google Scholar] [CrossRef]
- Chu, P.C.; Breshears, B.F.; Cullen, A.J.; Hammerer, R.F.; Martinez, R.P.; Phung, T.Q.; Margolina, T.; Fan, C.W. Environmental effects on underwater optical transmission. In Ocean Sensing and Monitoring IX; Weilin, H., Robert, A.A., Eds.; SPIE: Anaheim, CA, USA, 2017; Volume 10186. [Google Scholar] [CrossRef]
- Li, C.; Park, K.-H. On the use of a direct radiative transfer equation solver for path loss calculation in underwater optical wireless channels. IEEE Wireless Commun. Lett. 2015, 4, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Zhao, H. A fast-forward solver of radiative transfer equation. Transp. Theory Statist. Phys. 2009, 38, 149–192. [Google Scholar] [CrossRef]
- Wikipedia, Tropical Cyclone. 2019. Available online: https://en.wikipedia.org/wiki/Tropical_cyclone (accessed on 2 May 2020).
- University of Rhode Island, Hurricanes, Science and Society. 2019. Available online: http://hurricanescience.org/science/science/hurricanelifecycle/ (accessed on 2 May 2020).
- He, X.; Pan, D.; Bai, Y.; Wang, T.; Chen, C.A.; Zhu, Q.; Hao, Z.; Gong, F. Recent changes of global ocean transparency observed by SeaWiFS. Cont. Shelf Res. 2017, 143, 159–166. [Google Scholar] [CrossRef]
- Mahoney, K.L.; Grembowicz, K.; Bricker, B.; Crossland, S.; Bryant, D.; Torres, M. RIMPAC 08: Naval Oceanographic Office glider operations. In Proceedings of the SPIE Defense and Security; SPIE: Orlando, FL, USA, 2009. [Google Scholar] [CrossRef]
- Garaba, S.; Joshi, I.; Zaneveld, R. Technical Report on Wetlabs AC-S absorption and Beam Attenuation Meter. Technical Report. Maine Insitu Sound and Color Lab, The University of Maine, 2013; pp. 1–14. Available online: ftp://misclab.umeoce.maine.edu/users/optics/classFTP2013/Final_Projects/GroupSIA/Dummies_Intro_ACS_SG.pdf (accessed on 15 April 2020).
- Voss, K.J. A spectral model of the beam attenuation coefficient in the ocean and coastal waters. Limnol. Oceangr. 1992, 37, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, M.; Khalighi, A.; Bourennane, S.; Léon, P.; Rigaud, V. Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 2013, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Henyey, L.G.; Greenstein, J.L. Diffuse radiation in the galaxy. Astrophys. J. 1941, 93, 70–83. [Google Scholar] [CrossRef]
- Mobley, C. Ocean Optics Web Book. 2016. Available online: http://www.oceanopticsbook.info/ (accessed on 15 April 2020).
- Shen, C.; Guo, Y.; Oubei, H.M.; Ng, T.K.; Liu, G.; Park, K.-H.; Ho, K.-T.; Alouini, M.-S.; Ooi, B.S. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Express 2016, 24, 25502–25509. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, P.C.; Fan, C. Underwater Optical Path Loss after Passage of a Tropical Storm. Appl. Sci. 2020, 10, 4777. https://doi.org/10.3390/app10144777
Chu PC, Fan C. Underwater Optical Path Loss after Passage of a Tropical Storm. Applied Sciences. 2020; 10(14):4777. https://doi.org/10.3390/app10144777
Chicago/Turabian StyleChu, Peter C., and Chenwu Fan. 2020. "Underwater Optical Path Loss after Passage of a Tropical Storm" Applied Sciences 10, no. 14: 4777. https://doi.org/10.3390/app10144777
APA StyleChu, P. C., & Fan, C. (2020). Underwater Optical Path Loss after Passage of a Tropical Storm. Applied Sciences, 10(14), 4777. https://doi.org/10.3390/app10144777