# Ultrashort Vortex Pulses with Controlled Spectral Gouy Rotation

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## Featured Application

**Controlling the spectral Gouy rotation of propagating pulsed beams with orbital angular momentum opens specific channels for ultrafast communication and excitation.**

## Abstract

## 1. Introduction

## 2. Theoretical Background and Numerical Simulation

#### 2.1. Spectral Gouy Rotation of Bessel–Gauss Beams

_{B}of a Bessel beam compared to a reference plane wave accumulates with the distance z [50]:

#### 2.2. Numerical Simulation

_{0}= 100 µm to emulate the diffraction at components with small apertures. To filter out essential features of the obtained spatio-spectral maps, local statistical moments M

^{(i)}(x,y,λ) were determined. At the same time, this kind of spectral image processing procedure also enables one to reduce the large data containing fully extended spectra for each point in space. Figure 1 shows the results of the numerical simulations in terms of centers of gravity (COG), i.e., first spectral moments M

^{(1)}(x,y) for selected values of z between 4 and 11 mm increasing in steps of ∆z = 0.5 mm (see also the visualization movie in the supplementary material). The color code of the graphics reaches from about 793 nm (blue-shifted parts) until about 808 nm (red-shifted parts). The limits of the spectral interval slightly change depending on the axial distance to best visualize the spectral maps. The variation of the applied scale, however, did not exceed a value of 0.9 nm. The divergent Gaussian beam causes a stretching of the spatial scale with increasing distance.

## 3. Experimental Techniques and Mathematical Tools

#### 3.1. Shaping of Femtosecond Vortex Pulses with Stationary and Adaptive Components

#### 3.2. Vortex Analysis with Spectral Statistical Moments

^{(j)}(x,y) and linear combinations of such were determined for each transversal coordinate (x,y) in a plane. The resulting “movies” of z-dependent moment maps M

^{(j)}(x,y,z) specifically describe the spectral propagation behavior. The index j indicates the order of the statistical moment. The moments for j = 1 to j = 4 are related to center of gravity (COG), standard deviation, skewness, and kurtosis. More details on the statistical methods, including an extension to global moment analysis with radial meta-moments, were reported in ref. [55].

#### 3.3. Rotation Control and Relevant Parameters

_{z}can be defined as the axial derivative of the rotation angle φ of the connecting line between these COG coordinates:

_{t}follows as

_{0}and T

_{0}= P

_{0}/c within a given propagation distance z is directly proportional to Ω

_{z}and Ω

_{t}, respectively. The rotation angle as a function of the distance can be written as

## 4. Experimental Results and Discussion

#### 4.1. Parameters of Applied Spiral Phase Shapers

#### 4.2. Spectral Control by Tuning Center Wavelength and Bandwidth

#### 4.3. Variation of Grating Parameters

_{z}of the spectral Gouy rotation was obtained by (i) subsequently inserting static SPGs with different structural periods, and (ii) by adaptively modifying the periods of spiral phase gratings programmed into grey value maps of an LCoS-SLM.

_{max}~ arctan(λ/2D). For an element diameter of 200 µm and a wavelength of 800 nm, θ

_{max}should be in the range of 0.115°.

_{j}results from different starting points z

_{j}of the zones of detectable rotation. The accumulated phase is found to be linear with small deviations, as is expected for Bessel-like beams. Linearity enables well-defined rotation control. For some curves, the ranges of parameters are not fully covered because some of the measurements had to be terminated for technical reasons like laser stability.

#### 4.4. Rotation Control by Chirped Spirals and Multibeam Superposition

_{1}(t) and Ω

_{2}(t), we can define a spectral self-torque

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Bazhenov, V.Y.; Soskin, M.S.; Vasnetsov, M.V. Screw dislocations in light wavefronts. J. Mod. Opt.
**1992**, 39, 985–990. [Google Scholar] [CrossRef] - Allen, L.; Barnett, S.M.; Padgett, M.J. Optical Angular Momentum; CRC Press: Bristol, UK, 2003. [Google Scholar]
- Leach, J.; Keen, S.; Padgett, M.J.; Saunter, C.; Love, G.D. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Opt. Express
**2006**, 14, 11919–11924. [Google Scholar] [CrossRef] [PubMed][Green Version] - Andrews, D.; Babiker, M. (Eds.) The Angular Momentum of Light; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Mann, A. ‘Twisted’ light beams promise an optical revolution. PNAS
**2018**, 115, 5621–5623. [Google Scholar] [CrossRef] [PubMed][Green Version] - He, H.; Friese, M.E.J.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity. Phys. Rev. Lett.
**1995**, 75, 826–829. [Google Scholar] [CrossRef] - Garcés-Chávez, V.; Volke-Sepulveda, K.; Chávez-Cerda, S.; Sibbett, W.; Dholakia, K. Transfer of orbital angular momentum to an optically trapped low-index particle. Phys. Rev. A
**2002**, 66, 063402. [Google Scholar] - Shvedov, V.G.; Desyatnikov, A.S.; Rode, A.V.; Izdebskaya, Y.V.; Krolikowski, W.Z.; Kivshar, Y.S. Optical vortex beams for trapping and transport of particles in air. Appl. Phys. A
**2010**, 100, 327–331. [Google Scholar] [CrossRef] - Babiker, M.; Bennett, C.R.; Andrews, D.L.; Dávila Romero, L.C. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett.
**2002**, 89, 143601. [Google Scholar] [CrossRef] - Picón, A.; Mompart, J.; Vázquez de Aldana, J.R.; Plaja, L.; Calvo, G.F.; Roso, L. Photoionization with orbital angular momentum beams. Opt. Express
**2010**, 18, 3660–3671. [Google Scholar] [CrossRef] - Hnatovsky, C.; Shvedov, V.G.; Krolikowski, W.; Rode, A.V. Materials processing with a tightly focused femtosecond laser vortex pulse. Opt. Lett.
**2010**, 35, 3417–3419. [Google Scholar] [CrossRef][Green Version] - Hamazaki, J.; Morita, R.; Chujo, K.; Kobayashi, Y.; Tanda, S.; Omatsu, T. Optical-vortex laser ablation. Opt. Express
**2010**, 18, 2144–2151. [Google Scholar] [CrossRef] - Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl.
**2017**, 6, e17011. [Google Scholar] [CrossRef] [PubMed][Green Version] - Omatsu, T.; Miyamoto, K.; Toyoda, K.; Morita, R.; Arita, Y.; Dholakia, K. A New Twist for Materials Science: The formation of chiral structures using the angular momentum of light. Adv. Opt. Mat.
**2019**, 7, 1801672. [Google Scholar] [CrossRef] - Tamburini, F.; Anzolin, G.; Umbriaco, G.; Bianchini, A.; Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett.
**2006**, 97, 163903. [Google Scholar] [CrossRef][Green Version] - Crabtree, K.; Davis, J.A.; Moreno, I. Optical processing with vortex-producing lenses. Appl. Opt.
**2004**, 43, 11360–11367. [Google Scholar] [CrossRef] - Gibson, G.; Courtial, J.; Padgett, M.J.; Vasnetsov, M.; Pas’ko, V.; Barnett, S.M.; Franke-Arnold, S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express
**2004**, 12, 5448–5456. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lavery, M.P.J.; Tur, M.; Ramachandran, S.; Molisch, A.F.; Ashrafi, N.; Ashrafi, S. Optical communications using orbital angular momentum beams. Adv. Opt. Phot.
**2015**, 7, 66–106. [Google Scholar] - Cozzolino, D.; Bacco, D.; Da Lio, B.; Ingerslev, K.; Ding, Y.; Dalgaard, K.; Kristensen, P.; Galili, M.; Rottwitt, K.; Ramachandran, S.; et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys. Rev. Appl.
**2019**, 11, 064058. [Google Scholar] [CrossRef][Green Version] - Wang, J.; Yang, J.Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon.
**2012**, 6, 488–496. [Google Scholar] [CrossRef] - Wang, X.; Nie, Z.; Liang, Y.; Wang, J.; Li, T.; Jia, B. Recent advances on optical vortex generation. Nanophotonics
**2018**, 7, 1533–1556. [Google Scholar] [CrossRef] - Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation, from topological charge to multiple singularities. Light Sci. Appl.
**2019**, 8, 90. [Google Scholar] [CrossRef][Green Version] - Dorrah, A.H.; Rosales-Guzmán, C.; Forbes, A.; Mojahedi, M. Evolution of orbital angular momentum in three-dimensional structured light. Phys. Rev. A
**2018**, 98, 043846. [Google Scholar] [CrossRef][Green Version] - Yang, Y.; Zhu, X.; Zeng, J.; Lu, X.; Zhao, C.; Cai, Y. Anomalous Bessel vortex beam: Modulating orbital angular momentum with propagation. Nanophotonics
**2018**, 7, 677–682. [Google Scholar] [CrossRef] - Rozas, D.; Law, C.T.; Swartzlander, G.A. Propagation dynamics of optical vortices. J. Opt. Soc. Am. B
**1997**, 14, 3054–3065. [Google Scholar] [CrossRef] - Porras, M.A. Upper bound to the orbital angular momentum carried by an ultrashort pulse. Phys. Rev. Lett.
**2019**, 122, 123904. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gbur, G.; Visser, T.D.; Wolf, E. Anomalous behavior of spectra near phase singularities of focused waves. Phys. Rev. Lett.
**2002**, 88, 01390. [Google Scholar] [CrossRef][Green Version] - Berry, M.V. Coloured phase singularities. New J. Phys.
**2002**, 4, 66–73. [Google Scholar] [CrossRef] - Berry, M.V. Exploring the colours of dark light. New J. Phys.
**2002**, 4, 74–80. [Google Scholar] [CrossRef] - Popescu, G.; Dogariu, A. Spectral anomalies at wave-front dislocations. Phys. Rev. Lett.
**2002**, 88, 183902. [Google Scholar] [CrossRef][Green Version] - Leach, J.; Padgett, M.J. Observation of chromatic effects near a white-light vortex. New J. Phys.
**2003**, 5, 154. [Google Scholar] [CrossRef] - Angelsky, O.V.; Hanson, S.G.; Maksimyak, A.P.; Maksimyak, P.P. Feasibilities of interferometric and chromascopic techniques in study of phase singularities. Appl. Opt.
**2005**, 44, 5091–5100. [Google Scholar] [CrossRef] - Zapata-Rodríguez, C.J. Analytical characterization of spectral anomalies in polychromatic aperture beams. Opt. Commun.
**2006**, 257, 9–15. [Google Scholar] [CrossRef] - Ding, C.; Pan, L.; Lü, B. Phase singularities and spectral changes of spectrally partially coherent higher-order Bessel-Gauss pulsed beams. J. Opt. Soc. Am. A
**2009**, 26, 2654–2661. [Google Scholar] [CrossRef] [PubMed] - Bock, M.; Grunwald, R. Mapping the spectral twist of few cycle vortex pulses. Proc. SPIE
**2016**, 9764, 97640O. [Google Scholar] - Bock, M.; Liebmann, M.; Elsaesser, T.; Grunwald, R. Gouy Phase Rotation in Spectral Maps of Ultrashort Vortex Pulses; Digest Paper EE-1.4; CLEO/Europe-EQEC: Munich, Germany, 2017. [Google Scholar]
- Liebmann, M.; Treffer, A.; Bock, M.; Elsaesser, T.; Grunwald, R. Spectral anomalies and Gouy rotation around the singularity of ultrashort vortex pulses. Opt. Express
**2017**, 25, 26076–26088. [Google Scholar] [CrossRef] - Baumann, S.M.; Kalb, D.M.; MacMillan, L.H.; Galvez, E.J. Propagation dynamics of optical vortices due to Gouy phase. Opt. Express
**2009**, 17, 9818–9827. [Google Scholar] [CrossRef] [PubMed] - Hamazaki, J.; Mineta, Y.; Oka, K.; Morita, R. Direct observation of Gouy phase shift in a propagating optical vortex. Opt. Express
**2006**, 14, 8382–8392. [Google Scholar] [CrossRef] - Miyahara, H.; Qi, Y.; Kurihara, T.; Ando, S. Rotation of multi-zeros optical beam during propagation and its application to distance measurement. In Proceedings of the SICE Annual Conference 2011, Tokyo, Japan, 13–18 September 2011. FrC03-06. [Google Scholar]
- Schulze, C.; Roux, F.S.; Dudley, A.; Rop, R.; Duparré, M.; Forbes, A. Accelerated rotation with orbital angular momentum modes. Phys. Rev. A
**2015**, 91, 043821. [Google Scholar] [CrossRef][Green Version] - Yamane, K.; Sakamoto, M.; Murakami, N.; Morita, R.; Oka, K. Picosecond rotation of a ring-shaped optical lattice by using a chirped vortex-pulse pair. Opt. Lett.
**2016**, 41, 4597–4600. [Google Scholar] [CrossRef][Green Version] - Rego, L.; Dorney, K.M.; Brooks, N.J.; Nguyen, Q.L.; Liao, C.-T.; Román, J.S.; Couch, D.E.; Liu, A.; Pisanty, E.; Lewenstein, M.; et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science
**2019**, 364, eaaw9486. [Google Scholar] [CrossRef][Green Version] - Liebmann, M.; Treffer, A.; Bock, M.; Wallrabe, U.; Grunwald, R. Controlling the spectral rotation of ultrashort vortex pulses. Proc. SPIE
**2020**, 11297, 112970W. [Google Scholar] - Gouy, L.G. Sur une propriete nouvelle des ondes lumineuses. C. R. Acad. Sci. Paris
**1890**, 110, 1251–1253. [Google Scholar] - Gouy, L.G. Sur la propagation anomale des ondes. Compt. Rendue Acad. Sci. Paris
**1890**, 111, 33–35. [Google Scholar] - Rubinowicz, A. On the anomalous propagation of phase in the focus. Phys. Rev.
**1938**, 54, 931–936. [Google Scholar] [CrossRef] - Boyd, R.W. Intuitive explanation of the phase anomaly of focused light beams. J. Opt. Soc. Am.
**1980**, 70, 877–880. [Google Scholar] [CrossRef] - Kim, M.-S.; Scharf, T.; da Costa Assafrao, A.; Rockstuhl, C.; Pereira, S.F.; Urbach, H.P.; Herzig, H.P. Phase anomalies in Bessel-Gauss beams. Opt. Express
**2012**, 20, 28929–28940. [Google Scholar] [CrossRef] [PubMed][Green Version] - Martelli, P.; Tacca, M.; Gatto, A.; Moneta, G.; Martinelli, M. Gouy phase shift in nondiffracting Bessel beams. Opt. Express
**2010**, 18, 7108–7120. [Google Scholar] [CrossRef] - Liebmann, M.; Treffer, A.; Bock, M.; Seiler, T.; Jahns, J.; Elsaesser, T.; Grunwald, R. Spectral self-imaging and Gouy rotation echos of propagating vortex pulse arrays. Proc. SPIE
**2019**, 10935, 109350T. [Google Scholar] - Liebmann, M.; Treffer, A.; Bock, M.; Seiler, T.; Jahns, J.; Elsaesser, T.; Grunwald, R. Self-imaging of tailored vortex pulse arrays and spectral Gouy rotation echoes. Opt. Lett.
**2019**, 44, 1047–1050. [Google Scholar] [CrossRef] - Musigmann, M.; Jahns, J.; Bock, M.; Grunwald, R. Refractive-diffractive dispersion compensation for optical vortex beams with ultrashort pulse durations. Appl. Opt.
**2014**, 53, 7304–7311. [Google Scholar] [CrossRef] - Bock, M.; Brunne, J.; Treffer, A.; König, S.; Wallrabe, U.; Grunwald, R. Sub-3-cycle vortex pulses of tunable topological charge. Opt. Lett.
**2013**, 38, 3642–3645. [Google Scholar] [CrossRef] - Liebmann, M.; Treffer, A.; Bock, M.; Seiler, T.; Jahns, J.; Elsaesser, T.; Grunwald, R. Spectral meta- moments reveal hidden signatures of vortex pulses. In Proceedings of the EPJ Web of Conferences, Beijing, China, 19–24 May 2019; Volume 205, p. 01005. [Google Scholar]
- Yadav, B.K.; Kandpal, H.C. Spectral anomalies of polychromatic DHGB and its applications in FSOJ. Lightwave Technol.
**2011**, 29, 960–966. [Google Scholar] [CrossRef] - Pu, J.; Cai, C.; Nemoto, S. Spectral anomalies in Young’s double-slit interference experiment. Opt. Express
**2004**, 12, 5131–5139. [Google Scholar] [CrossRef] [PubMed] - Ghebjagh, S.G.; Sinzinger, S. Composite spiral multi-value zone plates. Appl. Opt.
**2020**, 15, 4618–4623. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Numerical simulation of rotating anomalies in the spatio-spectral propagation of femtosecond vortex pulses in air (FOV = 12 × 12 µm

^{2}). The centers of gravity (COG) of local spectral moments at distances z between 4 and 11 mm show the circulation of spectral eyes around the singularity during a full period of spectral Gouy rotation. To induce the orbital angular momentum, a binary spiral phase grating with a period of 8 µm and a phase stroke of 2π at a central wavelength of 800 nm was illuminated by a Gaussian beam of a full-width-at-half-maximum (FWHM) spectral bandwidth of 12 nm with a waist radius of w

_{0}= 100 µm. The color code reaches from a lower limit (blue tail) of λ

_{min}= 793 nm to an upper limit (red tail) of λ

_{max}= 808 nm (±0.9 nm).

**Figure 2.**Experimental setup for the generation and detection of femtosecond vortex pulses. An orbital angular momentum is induced by optional use of a spatial light modulator (SLM), a transmissive diffractive spiral phase grating (SPG), or a reflective spiral phase plate (SPP) as beam shaper. The vortex is magnified by a microscope and analyzed in spectral domain by a scanning fiber-based spectrometer. The fiber is moved by high-precision xyz-translation stages. From detected local spectra, 2D maps of spectral statistical moments M

^{(j)}(x,y) are extracted for each distance z.

**Figure 3.**Parts of selected spiral phase gratings (SPGs) used as vortex beam shapers in the experimental studies: (

**a**–

**c**) fixed diffractive elements (left) and (

**d**) spiral structure programmed into the SLM grey scale map (right). The elements correspond to configurations 3, 4, 6, and 2 in Table 1, respectively.

**Figure 4.**Spectral control by (

**a**) tuning the center wavelength via laser mode adjustment (1–3: three states shown with center wavelengths at 798 nm, 800 nm, and 802 nm, respectively), (

**b**) varying the FWHM spectral bandwidth ∆λ for a single selected laser mode (center wavelength λ

_{0}= 798 nm) between 2.5 nm and 8.5 nm.

**Figure 5.**Spectral transfer into vortex beams as a function of input spectral FWHM bandwidth for three wavelength ranges around (1) 798 nm, (2) 800 nm, and (3) 802 nm (spectral profiles in Figure 4a). Filled symbols: upper limits, hollow symbols: lower limits of spectral content in the spectral eyes.

**Figure 6.**Propagation-dependent maps of 1st spectral moment (COG) of experimentally detected maps of local spectra for two different vortex shaper configurations programmed in an LCoS-SLM (aperture D = 2 mm): (

**a**) generation of a Bessel–Gauss beam with a spiral phase grating (SPG) with spectral Gouy rotation (spiral grating period p = 16 µm) (see also video S1 in the supplementary material); (

**b**) vortex generation with a spiral phase plate (SPP), without spectral Gouy rotation. The little grey scale pictures at the left side symbolize the type of element (SPG, SPP).

**Figure 7.**Controlling the angular velocity by varying geometrical parameters. The modulo of the rotation angle is plotted as a function of propagation distance for equal paths ∆z. Different grating structure periods p and overall diameters D for programmable (SLM) and fixed (DOE) configurations are compared: (

**a**) SLM, p = 32 µm, D = 2 mm; (

**b**) SLM, p = 16 µm, D = 2 mm; (

**c**) DOE, p = 32 µm, D = 0.4 mm; (

**d**) DOE, p = 16 µm, D = 2 mm; (

**e**) DOE, p = 16 µm, D = 0.2 mm; and (

**f**) DOE, p = 16 µm, D = 0.4 mm.

**Figure 8.**Axial rotation periods P

_{0}of the spectral eyes as a function of conical beam angle θ and element diameter D (DOE = fixed spiral grating, SLM = programmable spatial light modulator). It is indicated that both parameters can be used to control the spectral Gouy rotation.

**Figure 9.**Angle of spectral Gouy rotation for extended propagation distances (numbers correspond to configuration numbers in Table 1). The increase of phase appears to be nearly linear.

**Table 1.**Geometrical parameters of spiral phase gratings used as orbital angular momentum (OAM) beam shapers.

Spiral Phase Gratings (SPG) Con-Figuration | Type of Orbital Angular Momentum (OAM) Shaper | Grating Period (µm) | Aperture Diameter (mm) | Depth of Focal Zone (mm) | Fresnel Number (Aperture)^{1} | 1st Order Diffraction Angle (°) |
---|---|---|---|---|---|---|

1 | SLM_32 | 32 | 2 | 40 | 250 | 1.43 |

2 | SLM_16 | 16 | 2 | 20 | 500 | 2.87 |

3 | DOE 4-step | 16 | 2 | 20 | 500 | 2.87 |

4 | DOE 2-step | 16 | 0.4 | 4 | 100 | 2.87 |

5 | DOE 2-step | 16 | 0.2 | 2 | 50 | 2.87 |

6 | DOE 2-step | 32 | 0.4 | 8 | 50 | 1.43 |

^{1}Data related to half depth of each focal zone at a central wavelength of 800 nm.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liebmann, M.; Treffer, A.; Bock, M.; Wallrabe, U.; Grunwald, R.
Ultrashort Vortex Pulses with Controlled Spectral Gouy Rotation. *Appl. Sci.* **2020**, *10*, 4288.
https://doi.org/10.3390/app10124288

**AMA Style**

Liebmann M, Treffer A, Bock M, Wallrabe U, Grunwald R.
Ultrashort Vortex Pulses with Controlled Spectral Gouy Rotation. *Applied Sciences*. 2020; 10(12):4288.
https://doi.org/10.3390/app10124288

**Chicago/Turabian Style**

Liebmann, Max, Alexander Treffer, Martin Bock, Ulrike Wallrabe, and Ruediger Grunwald.
2020. "Ultrashort Vortex Pulses with Controlled Spectral Gouy Rotation" *Applied Sciences* 10, no. 12: 4288.
https://doi.org/10.3390/app10124288