Biostimulant Effect of Marine Macroalgae Bioextract on Pepper Grown in Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Trial
2.2. Treatments
2.3. Evaluations
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical Characteristics
3.2. Chemical Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Filgueira, F.A.R. Novo Manual de Olericultura: Agrotecnologia Moderna na Produção e Comercialização de Hortaliças, 3rd ed.; UFV: Viçosa, Brazil, 2013; p. 421. ISBN 978-85-7269-313-4. [Google Scholar]
- Roselino, A.C.; Santos, S.A.B.; Bego, L.R. Qualidade dos frutos de pimentão (Capsicum annuum L.) a partir de flores polinizadas por abelhas sem ferrão (Melipona quadrifasciata anthidioides Lepeletier 1836 e Melipona scutellaris Latreille 1811) sob cultivo protegido. R. Bras. Bioci. 2010, 2, 154–158. [Google Scholar]
- Marouelli, W.; Silva, W.L.C. Irrigação na Cultura do Pimentão; Ministério da Agricultura, Pecuária e Abastecimento. Circular Técnica 1002, Embrapa: Brasília, Brazil, 2012; p. 24, ISSN 1415-3033. [Google Scholar]
- Caruso, G.; Stoleru, V.V.; Munteanu, N.C.; Sellitto, V.M.; Teliban, G.C.; Burducea, M.M.; Tenu, I.; Morano, G.; Butnariu, M. Quality performances of sweet pepper under farming management. Not. Bot. Horti Agrobot. 2019, 47, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Cozzolino, E.; Cuciniello, A.; Maiello, R.; Cenvinzo, E.; Giordano, M.; De Pascale, S.; Rouphael, Y. Yield and quality of greenhouse organic pepper as affected by shading net in Mediterranean area. Acta Hortic. 2020, 1268, 335–340. [Google Scholar] [CrossRef]
- EL Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants 2012, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Pereira, L. Biological and therapeutic properties of the seaweed polysaccharides. Int. Biol. Rev. 2018, 2, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Sousa, R.A.; Reis, R.L. A practical perspective on ulvan extracted from green algae. J. Appl. Phycol. 2013, 25, 407–424. [Google Scholar] [CrossRef] [Green Version]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Pereira, L.; Bahcevandziev, K.; Joshi, N.H. Seaweeds as Plant Fertilizer, Agricultural Biostimulants and Animal Fodder, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019; p. 232. ISBN 978-1-13-859706-8. [Google Scholar] [CrossRef]
- Melo, P.C.; Abreu, C.A.; Bahcevandziev, K.; Pereira, L. Marine macroalgae bioextract changes the index of reflectance in Pepper plants. Oceanogr. Fish. Open Access J. 2020, 11, 555822. [Google Scholar] [CrossRef]
- Barnes, J.S.; Kamprath, E.J. Availability of North Carolina rock phosphate applied to soils. N. C. Agric. Exp. Stn. Tech. Bull. 1975, 229, 23. [Google Scholar]
- Sharpe, P.J.H. Adaxial and abaxial stomatal resistance of Cotton in the field. Agron. J. 1973, 65, 570–574. [Google Scholar] [CrossRef]
- Sojka, R.E.; Parsons, J.E. Soybean water status and canopy microclimate relationships at four row spacings. Agron. J. 1983, 75, 961–968. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer analisys system to fixed effects split plot type designs. Rev. Bras. Biom. 2019, 37. [Google Scholar] [CrossRef] [Green Version]
- Köppen, W. Climatologia: Con un Estudio de los Climas de la Tierra. Fondo de Cultura Economica; Fondo de Cultura Economica: Ciudad de México, Mexico, 1948; p. 478. [Google Scholar]
- Dantas, A.A.A.; Carvalho, L.G.d.; Ferreira, E. Classificação e tendências climáticas em Lavras, MG. Cienc. E Agrotecnologia 2007, 31, 1862–1866. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.M.; Scorza, R.; Basset, C. Physiological and morphological traits associated with water use efficiency in the willow-leaf peach. Hortscience 2000, 35, 1241–1243. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.R.d.; Soares, Â.M.; Regina, M.d.A. Trocas gasosas de mudas de videira, obtidas por dois porta-enxertos, submetidas à deficiência hídrica. Pesqui. Agropecu. Bras. 2001, 36, 1221–1230. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.D.; Fernandes, E.J.; Rodrigues, T.d.J.D. Condutância estomática como indicador de estresse hídrico em feijão. Eng. Agríc. Jaboticabal 2005, 1, 86–95. [Google Scholar] [CrossRef]
- Farias, J.R.B.; Bergamaschi, H.; Martins, S.R.; Berlato, M.A.; Oliveira, A.C.B. Alterações na temperatura e umidade relativa do ar provocadas pelo uso da estufa plástica. Rev. Bras. Agrometeor. Santa Maria 1992, 1, 51–62. [Google Scholar]
- Cantuário, F.S. Produção de Pimentão Submetido a Estresse Hídrico e Silicato de Potássio em Cultivo Protegido. Master Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2012; p. 107. [Google Scholar]
- Souza, E.J.; Cunha, F.F.R.; Magalhães, F.F.; Silva, T.R.; Borges, M.C.R.Z.; Roque, C.G. Métodos para estimativa da umidade do solo na capacidade de campo. Rev. De Ciências Agro-Ambient. Alta Floresta 2013, 1, 43–50. [Google Scholar]
- Boutraa, T.; Akhkha, A.; Al-Shoaibi, A.A.; Alhejeli, A.M. Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J. Taibah Univ. Sci. 2010, 3, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Amalfitano, C.; Del Vacchio, L.; Somma, S.; Cuciniello, A.; Caruso, G. Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of “Friariello” pepper grown in hydroponics. Hortic. Sci. 2017, 44, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.M.; Chen, Y. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant Sci. 2017, 8, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leme, S.C. Qualidade Pós-Colheita de Pimentões Produzidos em Sistema Orgânico. PhD Thesis, UFLA, Lavras, Brazil, 2012; p. 117. [Google Scholar]
- Fontes, P.C.R.; Dias, E.N.; Silva, D.J.H.d. Dinâmica do crescimento, distribuição de matéria seca e produção de pimentão em ambiente protegido. Hortic. Bras. 2005, 23, 94–99. [Google Scholar] [CrossRef]
- Silva, M.A.G.d.; Boaretto, A.E.; Melo, A.M.T.d.; Fernandes, H.M.G.; Scivittaro, W.B. Rendimento e qualidade de frutos de pimentão cultivado em ambiente protegido em função do nitrogênio e potássio aplicados em cobertura. Sci. Agric. 1999, 56, 1199–1207. [Google Scholar] [CrossRef] [Green Version]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Faquin, V. Nutrição Mineral de Plantas. In Curso de Pós-Graduação Sensu Lato (Especialização) a Distância: Solos e Meio Ambiente; UFLA: Lavras, Brazil, 2005; p. 186. Available online: http://www.dcs.ufla.br/site/_adm/upload/file/pdf/Prof_Faquin/Nutricao%20mineral%20de%20plantas.pdf (accessed on 22 May 2020).
- Filgueira, F.A.R. Solanáceas: Agrotecnologia Moderna na Produção de Tomate, Batata, Pimentão, Pimenta, Beringela e Jiló; UFLA: Lavras, Brazil, 2003; p. 333. ISBN 85-87692-15-1. [Google Scholar]
- Crouch, I.J.; Beckett, R.P.; van Staden, J. Effect of seaweed concentrate on the growth and mineral nutrition of nutrient-stressed lettuce. J. Appl. Phycol. 1990, 2, 269–272. [Google Scholar] [CrossRef]
- Nelson, W.R.; Van Staden, J. The effect of seaweed concentrate on growth of nutrient-stressed, greenhouse cucumbers. HortScience 1984, 19, 81–82. [Google Scholar]
- Dobromilska, R.; Mikiciuk, M.G.; Gubarewicz, K. Evaluation of cherry tomato yielding and fruit mineral composition after using of Bio-Algeen S-90 preparation. J. Elementol. 2008, 13, 491–499. [Google Scholar]
pH 1 (H2O) | P | K | Zn | Fe | Mn | Cu | B | S | P-rem 2 (mg/L1) | |
---|---|---|---|---|---|---|---|---|---|---|
(mg/dm3) | (mg/dm3) | (mg/dm3) | (mg/dm3) | (mg/dm3) | (mg/dm3) | (mg/dm3) | (mg/dm3) | |||
6.3 | 27.02 | 649.07 | 4.24 | 66.28 | 6.62 | 1.74 | 0.04 | 14.5 | 17.45 | |
Ca | Mg | T3 | V4 | M5 | OM6 | Clay | Silt | Sand | ||
(cmol/dm3) | (cmol/dm3) | (cmol/dm3) | (%) | (%) | (%) | (%) | (%) | (%) | ||
0.95 | 0.10 | 4.27 | 63.57 | 24.93 | 2.55 | 6.3 | 3 | 55 |
Treatment | NP | mmol m−2 s−1 | AE (%) in Relation to T1 |
---|---|---|---|
T1-Control | 3 | 321.4 | 00 |
T2-Reabilit® Algas 0.5% | 3 | 408.0 | 27 |
T3-Reabilit® Algas 1.0% | 3 | 361.2 | 12 |
T4-Reabilit® Algas 1.5% | 3 | 332.9 | 04 |
T5-Reabilit® Algas 2.0% | 3 | 385.0 | 20 |
Treatment | LN (Unit) | AE (%) LN | FMAP (g) * | AE (%) FMAP | DMAP (g) | AE (%) DMAP | LAP (cm) | AE (%) LAP | RL (cm) | AE (%) RL | RFM (g) | AE (%) RFM | RDM (g) | AE (%) RDM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 39 | 00 | 104 ± 10.08 c | 00 | 15.03 | 00 | 50 | 00 | 13 | 00 | 16 | 00 | 3.0 | 00 |
T2 | 97 | 148 | 236 ± 8.01 a | 127 | 32.01 | 113 | 87 | 73 | 33 | 154 | 41 | 156 | 8.0 | 167 |
T3 | 84 | 115 | 186 ± 6.54 b | 79 | 24.65 | 64 | 89 | 78 | 43 | 230 | 42 | 165 | 7.2 | 140 |
T4 | 50 | 28 | 109 ± 3.51 c | 05 | 16.03 | 07 | 56 | 11 | 29 | 123 | 31 | 94 | 4.4 | 46 |
T5 | 42 | 08 | 94 ± 5.68 c | −9 | 15.24 | 02 | 62 | 24 | 37 | 185 | 37 | 134 | 3.8 | 25 |
Treatment | LD Max mm | LD (av.) mm | LD Min mm | TD Max mm | TD (av.) mm | TD Min mm | L/T (av.) Ratio | FRM (av.) (g) | TFRM 6 Plants (kg) * | AE TFRM (%) | Production 1000 Plants (kg) | NB ** 1000 Plants |
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 117.3 | 89.7 | 57.6 | 61.8 | 51.1 | 35.0 | 1.76 | 55.80 | 1.2 ± 9.5c | 00 | 186 | 17 |
T2 | 115.5 | 96.6 | 73.0 | 72.7 | 60.0 | 44.9 | 1.60 | 89.69 | 1.9 ± 4.6a | 69 | 314 | 29 |
T3 | 109.3 | 967 | 82.7 | 79.5 | 61.2 | 50.0 | 1.58 | 84.39 | 1.8 ± 6.5a | 59 | 295 | 27 |
T4 | 99.4 | 82.4 | 61.9 | 73.1 | 58.3 | 42.3 | 1.40 | 70.25 | 1.5 ± 7.3b | 32 | 246 | 22 |
T5 | 112.3 | 92.5 | 74.1 | 85.3 | 63.2 | 52.4 | 1.46 | 84.43 | 1.6 ± 6.0a | 44 | 267 | 24 |
Treatment/ DMAP * (Kg.1000 Plants−1) | N | P | K | Ca | Mg | S | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
g.kg−1 | AC-N Kg.1000 Plants−1 | g.kg−1 | AC-P Kg.1000 Plants−1 | g.kg−1 | AC-K Kg.1000 Plants−1 | g.kg−1 | AC-Ca Kg.1000 Plants−1 | g.kg−1 | AC-Mg Kg.1000 plants−1 | g.kg−1 | AC-S Kg.1000 plants−1 | |
T1/7.515 ± 2.6c | 15.0 | 112.73 | 3.3 | 24.80 | 48.4 | 363.73 | 6.8 | 51.10 | 2.8 | 21.04 | 1.8 | 13.53 |
T2/16.005 ± 0.4a ** | 24.0 | 384.12 | 3.1 | 49.61 | 58.8 | 941.09 | 9.3 | 148.85 | 3.7 | 59.22 | 2.3 | 36.81 |
T3/12.325 ± 1.1b | 22.7 | 279.78 | 3.1 | 38.21 | 61.2 | 754.29 | 12.0 | 147.90 | 4.7 | 57.93 | 2.5 | 30.81 |
T4/8.015 ± 0.23c | 25.0 | 200.37 | 3.3 | 26.45 | 59.4 | 476.09 | 10.1 | 80.95 | 4.3 | 34.46 | 2.3 | 18.43 |
T5/7.620 ± 0.51c | 30.0 | 228.60 | 4.9 | 37.34 | 60.1 | 457.96 | 14.5 | 110.49 | 7.2 | 54.86 | 3.5 | 26.67 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, P.; Abreu, C.; Bahcevandziev, K.; Araujo, G.; Pereira, L. Biostimulant Effect of Marine Macroalgae Bioextract on Pepper Grown in Greenhouse. Appl. Sci. 2020, 10, 4052. https://doi.org/10.3390/app10114052
Melo P, Abreu C, Bahcevandziev K, Araujo G, Pereira L. Biostimulant Effect of Marine Macroalgae Bioextract on Pepper Grown in Greenhouse. Applied Sciences. 2020; 10(11):4052. https://doi.org/10.3390/app10114052
Chicago/Turabian StyleMelo, Paulo, Carlos Abreu, Kiril Bahcevandziev, Glácio Araujo, and Leonel Pereira. 2020. "Biostimulant Effect of Marine Macroalgae Bioextract on Pepper Grown in Greenhouse" Applied Sciences 10, no. 11: 4052. https://doi.org/10.3390/app10114052
APA StyleMelo, P., Abreu, C., Bahcevandziev, K., Araujo, G., & Pereira, L. (2020). Biostimulant Effect of Marine Macroalgae Bioextract on Pepper Grown in Greenhouse. Applied Sciences, 10(11), 4052. https://doi.org/10.3390/app10114052