Experimental and Numerical Investigation of a Method for Strengthening Cold-Formed Steel Profiles in Bending
Abstract
:1. Introduction
2. Reinforcement Method
3. Experimental Campaign
3.1. Test Specimens
3.2. Material Properties
3.3. Test Set-Up
3.4. Data Acquisition and Instrumentation
4. Test Results and Discussion
4.1. Major Axis Test
4.2. Minor Axis Test
4.3. Remarks on the Results
5. Finite Element Models Arrangement
- Bending frame: The frame was modelled to simulate the major axis test, and other parts of the set-up were simulated throughout boundary condition and interaction descriptions.
- Single beam: The beam was modelled to simulate the minor axis test, and the other components of the test were simulated using appropriate stiffeners and boundary conditions.
5.1. Element Type, Mesh Size and Material Model
5.2. Connections and Interactions
5.3. Boundary Conditions and Loading
5.4. Validation of the Finite Element Results
5.4.1. Minor Axis
5.4.2. Major Axis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taheri, E.; Firouzianhaji, A.; Usefi, N.; Mehrabi, P.; Ronagh, H.; Samali, B. Investigation of a Method for Strengthening Perforated Cold-Formed Steel Profiles under Compression Loads. Appl. Sci. 2019, 9, 5085. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Shi, L.; Shariati, M.; Toghroli, A.; Mohamad, E.T.; Bui, D.T.; Khorami, M. Behavior of steel storage pallet racking connection—A review. Steel Compos. Struct. 2019, 30, 457–469. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Schafer, B.C. Distortional Buckling Tests on Cold-Formed Steel Beams. J. Struct. Eng. 2006, 132, 515–528. [Google Scholar] [CrossRef]
- Calderoni, B.; De Martino, A.; Formisano, A.; Fiorino, L. Cold formed steel beams under monotonic and cyclic loading: Experimental investigation. J. Constr. Steel Res. 2009, 65, 219–227. [Google Scholar] [CrossRef]
- Rogers, C.; Schuster, R. Flange/web distortional buckling of cold-formed steel sections in bending. Thin Walled Struct. 1997, 27, 13–29. [Google Scholar] [CrossRef]
- Hancock, G. Design for distortional buckling of flexural members. Thin Walled Struct. 1997, 27, 3–12. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Experimental and numerical investigation on cold-formed steel C-section flexural members. J. Constr. Steel Res. 2009, 65, 1225–1235. [Google Scholar] [CrossRef]
- Wang, L.; Young, B. Beam tests of cold-formed steel built-up sections with web perforations. J. Constr. Steel Res. 2015, 115, 18–33. [Google Scholar] [CrossRef]
- Yuan, W.-B.; Yu, N.-T.; Li, L.-Y. Distortional buckling of perforated cold-formed steel channel-section beams with circular holes in web. Int. J. Mech. Sci. 2017, 126, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Moen, C.D.; Schafer, B. Elastic buckling of cold-formed steel columns and beams with holes. Eng. Struct. 2009, 31, 2812–2824. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, K.; Yu, C.; Wang, J. Tests and direct strength design on cold-formed steel channel beams with web holes. Eng. Struct. 2019, 184, 434–446. [Google Scholar] [CrossRef]
- Zhao, O.; Rossi, B.; Gardner, L.; Young, B. Behaviour of structural stainless steel cross-sections under combined loading—Part I: Experimental study. Eng. Struct. 2015, 89, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Zhao, X.; Rasmussen, L.J. Flexural behaviour of steel storage rack beam-to-upright bolted connections. Thin Walled Struct. 2018, 124, 202–217. [Google Scholar] [CrossRef]
- Yu, N.-T.; Kim, B.; Yuan, W.-B.; Li, L.-Y.; Yu, F. An analytical solution of distortional buckling resistance of cold-formed steel channel-section beams with web openings. Thin Walled Struct. 2019, 135, 446–452. [Google Scholar] [CrossRef]
- Zhou, F.; Young, B. Tests of cold-formed stainless steel tubular flexural members. Thin Walled Struct. 2005, 43, 1325–1337. [Google Scholar] [CrossRef]
- Laím, L.; Rodrigues, J.P.; Da Silva, L.S. Experimental and numerical analysis on the structural behaviour of cold-formed steel beams. Thin Walled Struct. 2013, 72, 1–13. [Google Scholar] [CrossRef]
- Ye, J.; Hajirasouliha, I.; Becque, J.; Pilakoutas, K. Development of more efficient cold-formed steel channel sections in bending. Thin Walled Struct. 2016, 101, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.-T.; Kettle, R.; Li, L.-Y. Lateral-torsion buckling analysis of partial-laterally restrained thin-walled channel-section beams. J. Constr. Steel Res. 2004, 60, 1159–1175. [Google Scholar] [CrossRef]
- Muftah, F.; Sani, M.S.H.M.; Kamal, M.M.M. Flexural Strength Behaviour of Bolted Built-Up Cold-Formed Steel Beam with Outstand and Extended Stiffener. Int. J. Steel Struct. 2018, 19, 719–732. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Liu, Q.-F.; Zhu, J.; Bai, L.; Wang, F.-L.; Wang, J.-H. A simplified flange–lip model for distortional buckling of cold-formed steel channel-sections with stiffened web. Int. J. Mech. Sci. 2018, 136, 451–459. [Google Scholar] [CrossRef]
- Wu, M.-J.; Huang, X.-H.; Zhu, J. Distortional buckling of a CFS channel section with and without stiffened flanges. J. Mech. Sci. Technol. 2019, 33, 2623–2632. [Google Scholar] [CrossRef]
- Visy, D.; Szedlák, M.; Geleji, B.B.; Ádány, S. Flexural buckling of thin-walled lipped channel columns with slotted webs: Numerical and analytical studies. Eng. Struct. 2019, 197, 109399. [Google Scholar] [CrossRef]
- Shafaei, S.; Ronagh, H.; Usefi, N. Experimental evaluation of CFS braced-truss shear wall under cyclic loading. In Proceedings of the Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications, Cape Town, South Africa, 2–4 September 2019; pp. 192–196. [Google Scholar]
- Ye, J.; Jiang, L.; Wang, X. Seismic Failure Mechanism of Reinforced Cold-Formed Steel Shear Wall System Based on Structural Vulnerability Analysis. Appl. Sci. 2017, 7, 182. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Wang, X. Piecewise Function Hysteretic Model for Cold-Formed Steel Shear Walls with Reinforced End Studs. Appl. Sci. 2017, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Hancock, G.; Rogers, C. Design of cold-formed steel structures of high strength steel. J. Constr. Steel Res. 1998, 46, 167–168. [Google Scholar] [CrossRef]
- AS 4084. Steel Storage Racking; Standards Australia: Sydney, Australia, 2012. [Google Scholar]
- Put, B.M.; Trahair, N.S.; Pi, Y.-L. Bending and Torsion of Cold-Formed Channel Beams. J. Struct. Eng. 1999, 125, 540–546. [Google Scholar] [CrossRef]
- Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Zandi, Y.; Dehghani, D.; Bahadori, A.; Shariati, A.; Trung, N.T.; Shek, P. Application of Extreme Learning Machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures. Steel Compos. Struct. 2019, 33, 319. [Google Scholar]
- Shariati, M.; Trung, N.T.; Wakil, K.; Mehrabi, P.; Safa, M.; Khorami, M. Estimation of moment and rotation of steel rack connection using extreme learning machine. Steel Compos. Struct. 2019, 31, 427–435. [Google Scholar]
- Xu, C.; Zhang, X.; Mehrabi, P.; Shariati, A.; Mohamad, E.T.; Hoang, N.; Wakil, K. Using genetic algorithms method for the paramount design of reinforced concrete structures. Struct. Eng. Mech. 2019, 71, 503–513. [Google Scholar]
- Trung, N.T.; Shahgoli, A.F.; Zandi, Y.; Shariati, M.; Wakil, K.; Safa, M.; Khorami, M. Moment-rotation prediction of precast beam-to-column connections using extreme learning machine. Struct. Eng. Mech. 2019, 70, 639–647. [Google Scholar]
- Sedghi, Y.; Sedghi, Y.; Zandi, Y.; Shariati, M.; Ahmadi, E.; Azar, V.M.; Toghroli, A.; Safa, M.; Mohamad, E.T.; Khorami, M.; et al. Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struct. Syst. 2018, 22, 335–340. [Google Scholar]
- Safa, M.; Shariati, M.; Ibrahim, Z.; Toghroli, A.; Bin Baharom, S.; Nor, N.M.; Petkovic, D. Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos. Struct. 2016, 21, 679–688. [Google Scholar] [CrossRef]
- Shariati, M.; Faegh, S.S.; Mehrabi, P.; Bahavarnia, S.; Zandi, Y.; Masoom, D.R.; Toghroli, A.; Trung, N.T.; Salih, M.N.A. Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings. Steel Compos. Struct. 2019, 33, 569–581. [Google Scholar]
- Usefi, N.; Sharafi, P.; Ronagh, H. Numerical models for lateral behaviour analysis of cold-formed steel framed walls: State of the art, evaluation and challenges. Thin Walled Struct. 2019, 138, 252–285. [Google Scholar] [CrossRef]
- Sharafi, P.; Mortazavi, M.; Usefi, N.; Kildashti, K.; Ronagh, H.; Samali, B. Lateral force resisting systems in lightweight steel frames: Recent research advances. Thin Walled Struct. 2018, 130, 231–253. [Google Scholar] [CrossRef]
- Sharafi, P.; Rashidi, M.; Samali, B.; Ronagh, H.; Mortazavi, M. Identification of Factors and Decision Analysis of the Level of Modularization in Building Construction. J. Archit. Eng. 2018, 24, 04018010. [Google Scholar] [CrossRef]
- Usefi, N.; Ronagh, H.; Mohammadi, M. Finite Element Analysis of Hybrid Cold-Formed Steel Shear Wall Panels. In International Structural Engineering and Construction, 2018; ISEC Press: Fargo, ND, USA, 2018; Volume 5. [Google Scholar]
- Cardoso, F.S.; Rasmussen, L.J. Finite element (FE) modelling of storage rack frames. J. Constr. Steel Res. 2016, 126, 1–14. [Google Scholar] [CrossRef]
- Lakusic, S.; Usefi, N.; Nav, F.M.; Abbasnia, R. Finite element analysis of RC elements in progressive collapse scenario. J. Croat. Assoc. Civ. Eng. 2016, 68, 1009–1022. [Google Scholar] [CrossRef]
- Majidi, L.; Usefi, N.; Abbasnia, R. Numerical study of RC beams under various loading rates with LS-DYNA. J. Central South Univ. 2018, 25, 1226–1239. [Google Scholar] [CrossRef]
- Usefi, N.; Ronagh, H.; Kildashti, K.; Samali, B. Macro/Micro Analysis of Cold-Formed Steel Members Using ABAQUS and OPENSEES. In Volume of Abstracts, Proceedings of the 13th International Conference on Steel, Space and Composite Structures (SS18); The University of Western Australia: Perth, Australia, 2018. [Google Scholar]
- Nav, F.M.; Usefi, N.; Abbasnia, R. Analytical investigation of reinforced concrete frames under middle column removal scenario. Adv. Struct. Eng. 2017, 21, 1388–1401. [Google Scholar] [CrossRef]
- Abaqus, V. 6.14 Documentation; Dassault Systemes Simulia Corporation: Johnston, RI, USA, 2014; Volume 651. [Google Scholar]
Specimen Type | Geometry (mm) | Reinforcement | Loading Direction | ||||
---|---|---|---|---|---|---|---|
* Length | ** Thickness | *** Width | **** Sp | Major Axis | Minor Axis | ||
SMIM | 2400 | 1.6 | 600 | - | No | • | |
SMIM | - | No | • | ||||
SMIM | - | No | • | ||||
SMJM | - | No | • | ||||
SMJM | - | No | • | ||||
SMJM | - | No | • | ||||
200RMIM | 200 | Yes | • | ||||
200RMIM | 200 | Yes | • | ||||
200RMIM | 200 | Yes | • | ||||
200RMJM | 200 | Yes | • | ||||
200RMJM | 200 | Yes | • | ||||
200RMJM | 200 | Yes | • | ||||
300RMIM | 300 | Yes | • | ||||
300RMIM | 300 | Yes | • | ||||
300RMIM | 300 | Yes | • | ||||
300RMJM | 300 | Yes | • | ||||
300RMJM | 300 | Yes | • | ||||
300RMJM | 300 | Yes | • |
Section Type | Yield Stress, σy (MPa) | Ultimate Stress, σu (MPa) | Elongation (%) |
---|---|---|---|
Upright with 1.6 mm thickness (Test 1) | 561 | 578 | 10.3 |
Upright with 1.6 mm thickness (Test 2) | 557 | 585 | 9.6 |
Upright with 1.6 mm thickness (Test 3) | 571 | 610 | 10.1 |
Average | 563 | 591 | 10 |
Test Specimen | |
---|---|
SMJM-Test1 | 0.330997561 |
SMJM-Test2 | 0.342394439 |
SMJM-Test3 | 0.325000724 |
Average | 0.332797575 |
Standard deviation | 0.008835461 |
200RMJM-Test1 | 0.379727867 |
200RMJM-Test2 | 0.391261742 |
200RMJM-Test3 | 0.388300744 |
Average | 0.386430118 |
Standard deviation | 0.005990158 |
300RMJM-Test1 | 0.354944611 |
300RMJM-Test2 | 0.361971684 |
300RMJM-Test3 | 0.356490403 |
Average | 0.357802233 |
Standard deviation | 0.003692643 |
Test Specimen | Normalized Ultimate Bending Moment |
---|---|
SMIM-Test1 | 0.193595703 |
SMIM-Test2 | 0.203694478 |
SMIM-Test3 | 0.195419898 |
Average | 0.197570026 |
Standard deviation | 0.005381785 |
200RMIM-Test1 | 0.232982073 |
200RMIM-Test2 | 0.239285101 |
200RMIM-Test3 | 0.242392113 |
Average | 0.238219762 |
Standard deviation | 0.004794624 |
300RMIM-Test1 | 0.211013767 |
300RMIM-Test2 | 0.21581945 |
300RMIM-Test3 | 0.202362802 |
Average | 0.209732006 |
Standard deviation | 0.006819276 |
Non-reinforced model | Evaluation criteria | |
Standard deviation | 0.0618701 | |
Pearson (r) | 0.998139545 | |
R2 | 0.9963 | |
200 mm reinforced model | Evaluation criteria | |
Standard deviation | 0.08034494 | |
Pearson (r) | 0.993668695 | |
R2 | 0.998 | |
300 mm reinforced model | Evaluation criteria | |
Standard deviation | 0.069798432 | |
Pearson (r) | 0.998023512 | |
R2 | 0.9961 |
Non-reinforced model | Evaluation criteria | |
Standard deviation | 0.124180809 | |
Pearson (r) | 0.998891538 | |
R2 | 0.9978 | |
200 mm reinforced model | Evaluation criteria | |
Standard deviation | 0.135695798 | |
Pearson (r) | 0.995707933 | |
R2 | 0.9914 | |
300 mm reinforced model | Evaluation criteria | |
Standard deviation | 0.122399695 | |
Pearson (r) | 0.999038872 | |
R2 | 0.9981 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taheri, E.; Firouzianhaji, A.; Mehrabi, P.; Vosough Hosseini, B.; Samali, B. Experimental and Numerical Investigation of a Method for Strengthening Cold-Formed Steel Profiles in Bending. Appl. Sci. 2020, 10, 3855. https://doi.org/10.3390/app10113855
Taheri E, Firouzianhaji A, Mehrabi P, Vosough Hosseini B, Samali B. Experimental and Numerical Investigation of a Method for Strengthening Cold-Formed Steel Profiles in Bending. Applied Sciences. 2020; 10(11):3855. https://doi.org/10.3390/app10113855
Chicago/Turabian StyleTaheri, Ehsan, Ahmad Firouzianhaji, Peyman Mehrabi, Bahador Vosough Hosseini, and Bijan Samali. 2020. "Experimental and Numerical Investigation of a Method for Strengthening Cold-Formed Steel Profiles in Bending" Applied Sciences 10, no. 11: 3855. https://doi.org/10.3390/app10113855
APA StyleTaheri, E., Firouzianhaji, A., Mehrabi, P., Vosough Hosseini, B., & Samali, B. (2020). Experimental and Numerical Investigation of a Method for Strengthening Cold-Formed Steel Profiles in Bending. Applied Sciences, 10(11), 3855. https://doi.org/10.3390/app10113855