Strain Influence Factor Charts for Settlement Evaluation of Spread Foundations based on the Stress–Strain Method
Abstract
Featured Application
Abstract
1. Introduction
2. Derivation of the Strain Influence Factor Charts
3. Suitability of the “Characteristic Point” Concept in a Stress–Strain Analysis Framework
4. Water Table Correction Factor for Settlement Analysis of Footings on Granular Soils
5. Discussion
6. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmertmann, J.H.; Hartman, J.P.; Brown, P.R. Improved strain influence factor diagrams. J. Geotech. Geoenviron. Eng. 1978, 104, 1131–1135. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley: New York, NY, USA, 1996; ISBN 0471086584. [Google Scholar]
- Lunne, T.; Robertson, P.K.; Powell, J.J.M. Cone-penetration testing in geotechnical practice. Soil Mech. Found. Eng. 2009, 46, 237. [Google Scholar] [CrossRef]
- Coduto, D.P. Foundation Design: Principles and Practices, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001; ISBN 978-0133411898. [Google Scholar]
- Salgado, R. The Engineering of Foundations; McGraw-Hill: New York, NY, USA, 2008; Volume 888, ISBN 978-0072500585. [Google Scholar]
- Lee, J.; Eun, J.; Prezzi, M.; Salgado, R. Strain influence diagrams for settlement estimation of both isolated and multiple footings in sand. J. Geotech. Geoenviron. Eng. 2008, 134, 417–427. [Google Scholar] [CrossRef]
- Barksdale, R.D.; Blight, G.E. Compressibility, settlement and heave of residual soils. In Mechanics of Residual Soils; Blight, G.E., Leong, E.., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 149–212. [Google Scholar]
- CEN. EN 1997-2: Geotechnical Design—Part 2: Ground Investigation and Testing; European Committee for Standardization: Brussels, Belgium, 2007; ISBN 0580 24511X. [Google Scholar]
- AASHTO. AASHTO LRFD Bridge Design Specifications; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2010; ISBN 9781560514510. [Google Scholar]
- Samtani, N.C.; Nowatzki, E.A. Soils and Foundations—Volumes I and II. Publications No. FHWA NHI-06-088 and FHWA NHI-06-089; Federal Highway Administration: Washington, DC, USA, 2006. [Google Scholar]
- Pantelidis, L. A Critical Review of Schmertmann’s Strain Influence Factor Method for Immediate Settlement Analysis. Geotech. Geol. Eng. 2020, 38, 1–18. [Google Scholar] [CrossRef]
- Briaud, J.-L.; Gibbens, R. Large-Scale Load Tests and Data base of Spread Footings on Sand; United States. Federal Highway Administration: Washington, DC, USA, 1997. [Google Scholar]
- Briaud, J.-L.; Gibbens, R. Behavior of five large spread footings in sand. J. Geotech. Geoenviron. Eng. 1999, 125, 787–796. [Google Scholar] [CrossRef]
- Gifford, D.G.; Kraemer, S.R.; Wheeler, J.R.; McKown, A.F. Spread Footings for Highway Bridges; Final Report (No. FHWA/RD-86/185); Federal Highway Administration: Cambridge, MA, USA, 1987. [Google Scholar]
- Tan, C.K.; Duncan, J.M. Settlement of footings on sands—Accuracy and reliability. In Proceedings of the Geotechnical Engineering Congress, Boulder, CO, USA, 10–12 June 1991; ASCE: Reston, VA, USA, 1991; pp. 446–455. [Google Scholar]
- Anderson, D.G. Seismic Analysis and Design of Retaining Walls, Buried Structures, Slopes, and Embankments; Transportation Research Board: Washington, DC, USA, 2008; Volume 611, ISBN 0309117658. [Google Scholar]
- Ahmed, A.Y. Reliability Analysis of Settlement for Shallow Foundations in Bridges; University of Nebraska: Lincoln, NE, USA, 2013. [Google Scholar]
- Birid, K.C.; Chahar, R.S. Measured and Predicted Settlement of Shallow Foundations on Cohesionless Soil. In Geotechnical Applications; Anirudhan, I.V., Maji, V.B., Eds.; Springer: Singapore, 2019; pp. 3–13. ISBN 978-981-13-0368-5. [Google Scholar]
- Maugeri, M.; Castelli, F.; Massimino, M.R.; Verona, G. Observed and computed settlements of two shallow foundations on sand. J. Geotech. Geoenviron. Eng. 1998, 124, 595–605. [Google Scholar] [CrossRef]
- Mayne, P.W.; Poulos, H.G. Approximate displacement influence factors for elastic shallow foundations. J. Geotech. Geoenviron. Eng. 1999, 125, 453–460. [Google Scholar] [CrossRef]
- Tatsuoka, F.; Teachavorasinskun, S.; Dong, J.; Kohata, Y.; Sato, T. Importance of Measuring Local Strains in Cyclic Triaxial Tests on Granular Materials. In STP1213-EB Dynamic Geotechnical Testing II; Ebelhar, R., Drnevich, V., Kutter, B., Eds.; ASTM International: West Conshohocken, PA, USA, 1994; pp. 288–302. [Google Scholar]
- Jamiolkowski, M.; Lancellotta, R.; LoPresti, D.C.F. Remarks on the stiffness at small strains of six Italian clays. In Proceedings of the International Symposium on Pre-failure Deformation Characteristics of Geomaterials, Sapporo, Japan, 12–14 September 1994; Shibuya, S., Mitachi, T., Miura, S., Eds.; Balkema: Rotterdam, The Netherlands, 1995; Volume 2, pp. 817–836. [Google Scholar]
- Shahriar, M.A.; Sivakugan, N.; Das, B.M. Strain Influence Factors for Footings on an Elastic Medium. In Proceedings of the 11th Australia—New Zealand Conference on Geomechanics, Ground Engineering in a Changing World, Crown Conference Centre, Melbourne, Australia, 15–18 July 2012; Narsilio, G.A., Australian Geomechanics Society, New Zealand Geotechnical Society, Eds.; Australian Geomechanics Society and the New Zealand Geotechnical Society: Melbourne, Australian, 2012; pp. 131–136. [Google Scholar]
- Schmertmann, J.H. Static cone to compute static settlement over sand. J. Soil Mech. Found. Div. 1970, 96, 1011–1043. [Google Scholar]
- Boussinesq, J. Application des Potentiels à l’étude de l’équilibre et du Mouvement des Solides élastiques: Principalement au Calcul des Déformations et des Pressions que Produisent, Dans Ces Solides, des Efforts Quelconques Exercés sur une Petite Partie de Leur Surface; Forgotten Books: Paris, France, 1885; ISBN 978-0243352630. [Google Scholar]
- Das, B.M. Fundamentals of Geotechnical Engineering, 3rd ed.; CL-Engineering: Madrid, Spain, 2007; ISBN 978-0-495-29572-3. [Google Scholar]
- Grasshoff, H. Setzungsberechnungen starrer Fundamente mit Hilfe des kennzeichnenden Punktes. Bauingenieur 1955, 30, 53–54. [Google Scholar]
- Kany, M. Berechnung von Flächengründungen, 2nd ed.; Ernst u. Sohn: Berlin, Germany, 1974. [Google Scholar]
- Fenton, G.A.; Griffiths, D.V. Three-Dimensional Probabilistic Foundation Settlement. J. Geotech. Geoenviron. Eng. 2005, 131, 232–239. [Google Scholar] [CrossRef]
- Steinbrenner, S.W. Tafeln zur setzungsberechnung. Die StraBe 1934, 1, 121–124. [Google Scholar]
- Kézdi, A.; Rétháti, L. Volume 3: Soil Mechanics of Earthworks, Foundations and Highway Engineering, Handbook of Soil Mechanics; Elsevier: New York, NY, USA, 1988; ISBN 0-444-98929-3. [Google Scholar]
- Teng, W.C. Foundation Design; Prendice-Hall INc.: New York, NY, USA, 1962. [Google Scholar]
- Alpan, I. Estimating the settlements of foundations on sands. Civ. Eng. Public Work Rev. 1964, 59, 1415–1418. [Google Scholar]
- Bazaraa, A.R. Use of the Standard Penetration Test for Estimating Settlements of Shallow Foundations on Sand; University Microfilms: Ann Arbor, MI, USA, 1967. [Google Scholar]
- Bowles, L.E. Foundation Analysis and Design, 5th ed.; McGraw-hill: Singapore, 1996; ISBN 0079122477. [Google Scholar]
- Peck, R.B.; Hanson, W.E.; Thornburn, T.H. Foundation Engineering, 2nd ed.; John Willy & Sons: New York, NY, USA, 1974; ISBN 978-0-471-67585-3. [Google Scholar]
- Agarwal, K.B.; Rana, M.K. Effect of ground water on settlement of footings in sand. In Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, Dublin, Ireland, 31 August–3 September 1987; Hanrahan, E.T., Orr, T.L.L., Widdis, T.F., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1987; Volume 9, pp. 751–754. [Google Scholar]
- NAVFAC. Soil Mechanics Design Manual (NAVFAC DM 7.1); Naval Facilities Engineering Command: Alexandria, VA, USA, 1982. [Google Scholar]
- Shahriar, M.; Sivakugan, N.; Das, B. Settlements of shallow foundations in granular soils due to rise of water table—A critical review. Int. J. Geotech. Eng. 2012, 6, 515–524. [Google Scholar] [CrossRef]
- Shahriar, M.A.; Sivakugan, N.; Das, B.M.; Urquhart, A.; Tapiolas, M. Water Table Correction Factors for Settlements of Shallow Foundations in Granular Soils. Int. J. Geomech. 2015, 15, 06014015. [Google Scholar] [CrossRef]
- Shahriar, M.A.N.; Sivakugan, N.; Das, B.M. Settlement correction for future water table rise in granular soils: A numerical modelling approach. Int. J. Geotech. Eng. 2013, 7, 214–217. [Google Scholar] [CrossRef]
- Das, B.M. Shallow Foundations: Bearing Capacity and Settlement, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315163871. [Google Scholar]
- Burland, J.; Burbidge, M.; Wilson, E. Settlement of foundations on sand and gravel. Proc. Inst. Civ. Eng. 1985, 78, 1325–1381. [Google Scholar] [CrossRef]
- Meyerhof, G.G. Shallow foundations. J. Soil Mech. Found. Div 1965, 91, 21–31. [Google Scholar]
- Jamiolkowski, M.; Lo Presti, D.C.F.; Manassero, M. Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT. In Proceedings of the Soil Behavior and Soft Ground Construction, Cambridge, MA, USA, 5–6 October 2001; American Society of Civil Engineers: Reston, VA, USA, 2003; pp. 201–238. [Google Scholar]
- Bellotti, R.; Crippa, V.; Pedroni, S.; Ghionna, V.N. Saturation of sand specimen for calibration chamber tests. In Proceedings of the International Symposium on Penetration Testing, Orlando, FL, USA, 20–24 March 1988; pp. 661–671. [Google Scholar]
- Villet, W.C.B.; Mitchell, J.K. Cone resistance, relative density and friction angle. In Proceedings of the Cone penetration Testing and Experience, St. Louis, MO, USA, 26–30 October 1981; ASCE: New York, NY, USA, 1981; pp. 178–208. [Google Scholar]
- Bonita, J.A. The Effects of Vibration on the Penetration Resistance and Pore Water Pressure in Sands. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2000. [Google Scholar]
- Schmertmann, J.H. An Updated Correlation between Relative Density, Dr, and Fugro-type Electric Cone Bearing, qc (Report DACW 39-76 M6646); Waterway Experimental Atation: Vicksburg, MS, USA, 1976. [Google Scholar]
- Lo Presti, D.; Stacul, S.; Meisina, C.; Bordoni, M.; Bittelli, M. Preliminary Validation of a Novel Method for the Assessment of Effective Stress State in Partially Saturated Soils by Cone Penetration Tests. Geosciences 2018, 8, 30. [Google Scholar] [CrossRef]
- Rao, N.S.V.K. Foundation Design: Theory and Practice; John Wiley & Sons: Singapore, 2010; ISBN 0470828153. [Google Scholar]
- Fang, H.-Y. Foundation Engineering Handbook, 2nd ed.; Springer: New York, NY, USA, 1991; ISBN 1475752717. [Google Scholar]
- Canadian Geotechnical Society. Canadian Foundation Engineering Manual, 4th ed.; Canadian Geotechnical Society: Edmonton, AB, Canada, 2006. [Google Scholar]
- Sanglerat, G. The Penetrometer and Soil Exploration; Elsevier: New York, NY, USA, 1972; ISBN 0444599363. [Google Scholar]
- Murthy, V.N.S. Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering; Marcel Dekker: New York, NY, USA, 2002; ISBN 1482275856. [Google Scholar]
- Robertson, P.K. Interpretation of cone penetration tests—A unified approach. Can. Geotech. J. 2009, 46, 1337–1355. [Google Scholar] [CrossRef]
- Lee, K.L. Comparison of plane strain and triaxial tests on sand. J. Soil Mech. Found. Div. 1970, 96, 901–923. [Google Scholar]
- Pantelidis, L. Elastic Settlement Analysis for Various Footing Cases Based on Strain Influence Areas. Geotech. Geol. Eng. 2020. [Google Scholar] [CrossRef]
- Pantelidis, L. The effect of footing shape on the elastic modulus of soil. In Proceedings of the 2nd Conference of the Arabian Journal of Geosciences (CAJG), Sousse, Tunisia, 25–28 November 2019; Springer: Heidelberg, Germany, 2019. [Google Scholar]
- Poulos, H.G.; Davis, E.H. Elastic Solutions for Soil and Rock Mechanics; John Wiley & Sons: New York, NY, USA, 1991; ISBN 0471695653. [Google Scholar]
- Fox, L. The mean elastic settlement of a uniformly loaded area at a depth below the ground surface. In Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands, 21–30 June 1948; Volume 1, pp. 129–132. [Google Scholar]
- Díaz, E.; Tomás, R. Revisiting the effect of foundation embedment on elastic settlement: A new approach. Comput. Geotech. 2014, 62, 283–292. [Google Scholar] [CrossRef]
- Janbu, N.; Bjerrum, L.; Kjaernsli, B. Veiledning Ved Losing av Fandamenteringsoppgaver. Nor. Geotech. Inst. 1956, 16. [Google Scholar]
- Christian, J.; Carrier, D. Janbu, Bjerrum and Kjaernsli’s chart reinterpreted. Can. Geotech. J. 1978, 15, 123–128. [Google Scholar] [CrossRef]
- Pantelidis, L. On the modulus of subgrade reaction for shallow foundations on homogenous or stratified mediums. In Proceedings of the 3rd International Structural Engineering and Construction Conference (EURO-MED-SEC-03), Limassol, Cyprus, 3–8 August 2020; Vacanas, Y., Danezis, C., Yazdani, S., Singh, A., Eds.; ISEC Press: Limassol, Cyprus, 2020. [Google Scholar]
- Harr, M.E. Foundations of Theoretical Soil Mechanics; McGraw-Hill: New York, NY, USA, 1966; ISBN 978-0070267411. [Google Scholar]
Shape of Footing | Point of Application | Integration Limits | |||
---|---|---|---|---|---|
x1 | x2 | y1 | y2 | ||
Flexible circular | = 0, R/3, 2R/3 and R from the center | ||||
Rigid circular | (uniform settlement) | ||||
Flexible rectangular | Center 1 | ||||
Corner | |||||
Trapezoidal embankment 2 | “O” (Figure 9a) | 3 | 3 | ||
0 4 | 4 | ||||
Triangular embankment | “O” or “Q” (Figure 9b) | 0 | 0 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantelidis, L. Strain Influence Factor Charts for Settlement Evaluation of Spread Foundations based on the Stress–Strain Method. Appl. Sci. 2020, 10, 3822. https://doi.org/10.3390/app10113822
Pantelidis L. Strain Influence Factor Charts for Settlement Evaluation of Spread Foundations based on the Stress–Strain Method. Applied Sciences. 2020; 10(11):3822. https://doi.org/10.3390/app10113822
Chicago/Turabian StylePantelidis, Lysandros. 2020. "Strain Influence Factor Charts for Settlement Evaluation of Spread Foundations based on the Stress–Strain Method" Applied Sciences 10, no. 11: 3822. https://doi.org/10.3390/app10113822
APA StylePantelidis, L. (2020). Strain Influence Factor Charts for Settlement Evaluation of Spread Foundations based on the Stress–Strain Method. Applied Sciences, 10(11), 3822. https://doi.org/10.3390/app10113822