Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement
Abstract
1. Introduction
2. Existing Concepts for Reinforcement Integration
2.1. Overview
2.2. Review of Existing Methods
3. Additive Manufacturing of Reinforced Concrete Process (AMoRC)
3.1. Requirements for a Viable 3D Printing Procedure of Reinforced Concrete
3.2. Development of the AMoRC Process
4. Applicability of Concept
4.1. Preliminary Works and Machine Setup
4.2. Production of a 3D-Printed RC Wall Prototype
4.3. Outlook to Envisaged Investiagtions
5. Assessing Benefits and Potential of the AMoRC Process
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hull, C.W. The birth of 3D printing. Res.-Technol. Manag. 2015, 58, 25–30. [Google Scholar]
- Calignano, F.; Manfredi, D.; Ambrosio, E.P.; Biamino, S.; Lombardi, M.; Atzeni, E.; Fino, P. Overview on additive manufacturing technologies. Proc. IEEE 2017, 105, 593–612. [Google Scholar] [CrossRef]
- Schubert, C.; Van Langeveld, M.C.; Donoso, L.A. Innovations in 3D printing: A 3D overview from optics to organs. Br. J. Ophthalmol. 2014, 98, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevis, B. Automated construction by Contour Crafting—Related robotics and information technologies. J. Autom. Constr. 2004, 13, 5–19. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.; Le, T.; Wackrow, R.; Austin, S.; Gibb, A.; Thorpe, T. Development of a viable concrete printing process. In Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC2011), Seoul, Korea, 29 June–2 July 2011; pp. 665–670. [Google Scholar]
- Buswell, R.A.; de Silva, W.L.; Jones, S.Z.; Dirrenberger, J. 3D printing using concrete extrusion: A roadmap for research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Bos, F.P.; Perrot, A.; da Silva, W.L.; Nerella, V.N.; Fataei, S.; Roussel, N. Extrusion-based additive manufacturing with cement-based materials–Production steps, processes, and their underlying physics: A review. Cem. Concr. Res. 2020, 132, 106037. [Google Scholar] [CrossRef]
- Tay, Y.W.D.; Panda, B.; Paul, S.C.; Noor Mohamed, N.A.; Tan, M.J.; Leong, K.F. 3D printing trends in building and construction industry: A review. Virtual Phys. Prototyp. 2017, 12, 261–276. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N. Beton-3D-Druck durch selektive Ablage. Beton- Und Stahlbetonbau 2019, 114, 24–32. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N.; Will, F.; Näther, M.; Otto, J.; Krause, M. Large-scale digital concrete construction—CONPrint3D concept for on-site, monolithic 3D-printing. Autom. Constr. 2019, 107, 102933. [Google Scholar] [CrossRef]
- De Schutter, G.; Lesage, K.; Mechtcherine, V.; Nerella, V.N.; Habert, G.; Agusti-Juan, I. Vision of 3D printing with concrete—Technical, economic and environmental potentials. Cem. Concr. Res. 2018, 112, 25–36. [Google Scholar] [CrossRef]
- Van Der Putten, J.; De Schutter, G.; Van Tittelboom, K. The effect of print parameters on the (micro) structure of 3D printed cementitious materials. In RILEM International Conference on Concrete and Digital Fabrication; Springer: Cham, Switzerland, 2018; pp. 234–244. [Google Scholar]
- Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual Phys. Prototyp. 2016, 11, 209–225. [Google Scholar] [CrossRef]
- Wolfs, R.; Suiker, A. Structural failure during extrusion-based 3D printing processes. Int. J. Adv. Manuf. Technol. 2019, 104, 565–584. [Google Scholar] [CrossRef]
- Asprone, D.; Menna, C.; Bos, F.P.; Salet, T.A.; Mata-Falcón, J.; Kaufmann, W. Rethinking reinforcement for digital fabrication with concrete. Cem. Concr. Res. 2018, 112, 111–121. [Google Scholar] [CrossRef]
- Sevenson, B. Shanghai-based WinSun 3D Prints 6-Story Apartment Building and an Incredible Home. 2020. Available online: https://3dprint.com/38144/3Dprinted-apartmentbuilding/ (accessed on 2 May 2020).
- Apis Cor. Apis Cor—Construction Technology. 2020. Available online: http://apis-cor.com/en/faq/texnologiya-stroitelstva (accessed on 2 May 2020).
- Bos, F.; Wolfs, R.; Ahmed, Z.; Salet, T. Large scale testing of digitally fabricated concrete (DFC) elements. In RILEM International Conference on Concrete and Digital Fabrication; Springer: Cham, Switzerland, 2018; pp. 129–147. [Google Scholar]
- Asprone, D.; Auricchio, F.; Menna, C.; Mercuri, V. 3D printing of reinforced concrete elements: Technology and design approach. Constr. Build. Mater. 2018, 165, 218–231. [Google Scholar] [CrossRef]
- Scott, C. Chinese Construction Company 3D Prints an Entire Two-Story House On-Site in 45 Days. 2016. Available online: https://3dprint.com/138664/huashangtengda-3Dprint-house/ (accessed on 2 May 2020).
- Lindemann, H.; Gerbers, R.; Ibrahim, S.; Dietrich, F.; Herrmann, E.; Dröder, K.; Raatz, A.; Kloft, H. Development of a shotcrete 3D-printing (SC3DP) technology for additive manufacturing of reinforced freeform concrete structures. In RILEM International Conference on Concrete and Digital Fabrication; Springer: Cham, Switzerland, 2018; pp. 287–298. [Google Scholar]
- Kloft, H.; Hack, N.; Mainka, J.; Brohmann, L.; Herrmann, E.; Ledderose, L.; Lowke, D. Additive Fertigung im Bauwesen: Erste 3-D-gedruckte und bewehrte Betonbauteile im Shotcrete-3-D-Printing-Verfahren (SC3DP). Bautechnik 2019, 96, 929–938. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Nerella, V.N. Integration der Bewehrung beim 3D-Druck mit Beton. Beton-und Stahlbetonbau 2018, 113, 496–504. [Google Scholar] [CrossRef]
- Hack, N.; Lauer, W.V. Mesh-Mould: Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork. Archit. Des. 2014, 84, 44–53. [Google Scholar] [CrossRef]
- Bos, F.P.; Ahmed, Z.Y.; Wolfs, R.J.; Salet, T.A. 3D printing concrete with reinforcement. In High Tech Concrete: Where Technology and Engineering Meet; Springer: Cham, Switzerland, 2018; pp. 2484–2493. [Google Scholar]
- Khoshnevis, B.; Bekey, G. Automated Construction Using Contour Crafting-Applications on Earth and Beyond; Nist Special Publication; The International Association for Automation and Robotics in Construction: London, UK, 2003; pp. 489–494. [Google Scholar]
- Classen, M.; Gallwoszus, J.; Kopp, M.; Schäfer, J. Kleinskalige Pin-Verbundmittel für den Stahl-Beton-Verbundbau. Bauingenieur 2015, 90, 200–208. [Google Scholar]
- Classen, M.; Herbrand, M.; Kueres, D.; Hegger, J. Derivation of design rules for innovative shear connectors in steel-concrete composites through the systematic use of non-linear finite element analysis (FEA). Struct. Concr. 2016, 17, 646–655. [Google Scholar] [CrossRef]
- Reisgen, U.; Willms, K.M.; Schäfer, J.; Türker, M.; Hegger, J.; Classen, M.; Feldmann, M.; Kopp, M. Investigations on small-scaled welded structures of austenitic stainless steel. Kov. Mater. 2019, 57, 397–405. [Google Scholar] [CrossRef]
- Brell-Cokcan, S.; Lublasser, E.; Haarhoff, D.; Kuhnhenne, M.; Feldmann, M.; Pyschny, D. Zukunft Robotik–Automatisierungspotentiale im Stahl- und Metallleichtbau. Stahlbau 2017, 86, 225–233. [Google Scholar] [CrossRef]
- Kampf, M. Verbindende Verfahren. In Handbuch Maschinenbau; Böge, A., Böge, W., Eds.; Springer: Vieweg, Wiesbaden, 2017. [Google Scholar]
- Classen, M.; Adam, V.; Hillebrand, M. Torsion Test Setup to Investigate Aggregate Interlock and Mixed Mode Fracture of Monolithic and 3D-Printed Concrete; FIB Symposium: Krakow, Poland, 2019. [Google Scholar]
- Reisgen, U.; Sharma, R.; Oster, L. Plasma Multiwire Technology with Alternating Wire Feed for Tailor-Made Material Properties in Wire and Arc Additive Manufacturing. Metals 2019, 9, 745. [Google Scholar] [CrossRef]
- Näther, M.; Nerella, V.N.; Krause, M.; Kunze, G.; Mechtcherine, V.; Schach, R. Beton-3D-Druck –Machbarkeitsuntersuchungen zu Kontinuierlichen und Schalungsfreien Bauverfahren Durch 3D-Formung von Frischbeton; Abschlussbericht zum ZukunftBau-BMVBS-Projekt TU: Dresden, Germany, 2017. [Google Scholar]
Dimension | Requirement/Target |
---|---|
Process engineering |
|
Structural behavior |
|
Durability |
|
Economic efficiency |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Classen, M.; Ungermann, J.; Sharma, R. Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement. Appl. Sci. 2020, 10, 3791. https://doi.org/10.3390/app10113791
Classen M, Ungermann J, Sharma R. Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement. Applied Sciences. 2020; 10(11):3791. https://doi.org/10.3390/app10113791
Chicago/Turabian StyleClassen, Martin, Jan Ungermann, and Rahul Sharma. 2020. "Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement" Applied Sciences 10, no. 11: 3791. https://doi.org/10.3390/app10113791
APA StyleClassen, M., Ungermann, J., & Sharma, R. (2020). Additive Manufacturing of Reinforced Concrete—Development of a 3D Printing Technology for Cementitious Composites with Metallic Reinforcement. Applied Sciences, 10(11), 3791. https://doi.org/10.3390/app10113791