First Experiments in Structural Biology at the European X-ray Free-Electron Laser
Abstract
:1. Structural Biology at XFEL Sources
1.1. X-ray Sources and Crystallography
1.2. Free Electron Lasers (FELs)
1.3. Structural Biology Experiments at XFEL Sources
1.4. The European XFEL (EuXFEL)
1.5. Diffraction before Destruction
1.6. First User Experiments at the EuXFEL
1.7. Pulse-by-Pulse Analysis within the Pulse Train
1.8. Membrane Protein Serial Crystallography at MHz Rates
1.9. Time-Resolved Serial Crystallography at MHz Rates
2. A More Flexible MHz, Serial Crystallography Experiment
Mixing Experiments at MHz Pulse Rates
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Franklin, R.E.; Gosling, R.G. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 1953, 172, 156–157. [Google Scholar] [CrossRef] [PubMed]
- Helliwell, J.R.; Mitchell, E.P. Synchrotron radiation macromolecular crystallography: Science and spin-offs. IUCrJ 2015, 2, 283–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, G.; Holmes, K.C.; Witz, J. Synchrotron radiation as a source for X-ray diffraction. Nature 1971, 230, 434–437. [Google Scholar] [CrossRef]
- Phillips, J.C.; Wlodawer, A.; Yevitz, M.M.; Hodgson, K.O. Applications of synchrotron radiation to protein crystallography: Preliminary results. Proc. Natl. Acad. Sci. USA 1976, 73, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Hendrickson, W.A. Anomalous diffraction in crystallographic phase evaluation. Q. Rev. Biophys. 2014, 47, 49–93. [Google Scholar] [CrossRef] [Green Version]
- Hendrickson, W.A. Analysis of protein structure from diffraction measurement at multiple wavelengths. Trans. Am. Crystallogr. Assoc. 1985, 21, 11–21. [Google Scholar]
- Kahn, R.; Fourme, R.; Bosshard, R.; Chiadmi, M.; Risler, J.; Dideberg, O.; Wery, J. Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction. FEBS Lett. 1985, 179, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Bösecke, P.; Diat, O.; Rasmussen, B. High-brilliance Beamline at the European Synchrotron Radiation Facilitya. Rev. Sci. Instrum. 1995, 66, 1636–1638. [Google Scholar] [CrossRef]
- Cork, C.; Padmore, H.; McDermott, G.; Hung, L.W.; Henderson, K.; Robinson, A.; Earnest, T. The macromolecular crystallography facility at the Advanced Light Source. Synchrotron Radiat. News 1998, 11, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Hirata, K.; Kawano, Y.; Ueno, G.; Hashimoto, K.; Murakami, H.; Hasegawa, K.; Hikima, T.; Kumasaka, T.; Yamamoto, M. Achievement of protein micro-crystallography at SPring-8 beamline BL32XU. J. Phys. Conf. Ser. 2013, 425, 012002. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, A.; Pakendorf, T.; Reime, B.; Meyer, J.; Fischer, P.; Stübe, N.; Panneerselvam, S.; Lorbeer, O.; Stachnik, K.; Warmer, M.; et al. Status of the crystallography beamlines at PETRA III. Eur. Phys. J. Plus 2016, 131, 56. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, M. The European X-ray free-electron laser facility in Hamburg. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2011, 269, 2845–2849. [Google Scholar] [CrossRef]
- Blundell, T.L. Structure-based drug design. Nature 1996, 384, 23. [Google Scholar]
- Anderson, A.C. The Process of Structure-Based Drug Design. Chem. Biol. 2003, 10, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Spence, J.C. X-ray lasers for structure and dynamics in biology. IUCrJ 2018, 5, 236. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J. An analysis of self-amplified spontaneous emission. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1986, 250, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Chapman, H.N.; Caleman, C.; Timneanu, N. Diffraction before destruction. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130313. [Google Scholar] [CrossRef] [Green Version]
- Schoenlein, R.; Chattopadhyay, S.; Chong, H.; Glover, T.; Heimann, P.; Shank, C.; Zholents, A.; Zolotorev, M. Generation of femtosecond pulses of synchrotron radiation. Science 2000, 287, 2237–2240. [Google Scholar] [CrossRef] [Green Version]
- Owen, R.L.; Juanhuix, J.; Fuchs, M. Current advances in synchrotron radiation instrumentation for MX experiments. Arch. Biochem. Biophys. 2016, 602, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P.; Weierstall, U.; et al. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Boutet, S.; Lomb, L.; Williams, G.J.; Barends, T.R.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P.; Steinbrener, J.; Shoeman, R.L.; et al. High-resolution protein structure determination by serial femtosecond crystallography. Science 2012, 337, 362–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.A.; Kirian, R.A.; Martin, A.V.; Aquila, A.; Nass, K.; Barty, A.; Chapman, H.N. CrystFEL: A software suite for snapshot serial crystallography. J. Appl. Crystallogr. 2012, 45, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Gevorkov, Y.; Barty, A.; Brehm, W.; White, T.; Tolstikova, A.; Wiedorn, M.O.; Meents, A.; Grigat, R.-R.; Chapman, H.N.; Yefanov, O. pinkIndexer—A universal indexer for pink-beam X-ray and electron diffraction snapshots. Acta Crystallogr. Sect. A Found. Adv. 2020, 76, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Stellato, F.; Oberthür, D.; Liang, M.; Bean, R.; Gati, C.; Yefanov, O.; Barty, A.; Burkhardt, A.; Fischer, P.; Galli, L.; et al. Room-temperature macromolecular serial crystallography using synchrotron radiation. Int. Union Crystallogr. 2014, 1, 204–212. [Google Scholar] [CrossRef]
- Gati, C.; Oberthuer, D.; Yefanov, O.; Bunker, R.D.; Stellato, F.; Chiu, E.; Yeh, S.M.; Aquila, A.; Basu, S.; Bean, R.; et al. Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proc. Natl. Acad. Sci. USA 2017, 114, 2247–2252. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.M.; Frankel, K.A. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Snell, E.H.; Bellamy, H.D.; Borgstahl, G.E. Macromolecular crystal quality. Methods Enzymol. 2003, 368, 268–288. [Google Scholar]
- Boggon, T.; Helliwell, J.; Judge, R.A.; Olczak, A.; Siddons, D.; Snell, E.; Stojanoff, V. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality. Acta Crystallogr. Sect. D Biol. Crystallogr. 2000, 56, 868–880. [Google Scholar] [CrossRef]
- Chayen, N.E.; Saridakis, E. Protein crystallization: From purified protein to diffraction-quality crystal. Nat. Methods 2008, 5, 147. [Google Scholar] [CrossRef]
- Chayen, N.; Boggon, T.; Cassetta, A.; Deacon, A.; Gleichmann, T.; Habash, J.; Harrop, S.; Helliwell, J.; Nieh, Y.; Peterson, M.; et al. Trends and challenges in experimental macromolecular crystallography. Q. Rev. Biophys. 1996, 29, 227–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPherson, A.; Gavira, J.A. Introduction to protein crystallization. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2014, 70, 2–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, E.P.; Beis, K.; Cameron, A.D.; Iwata, S. Overcoming the challenges of membrane protein crystallography. Curr. Opin. Struct. Biol. 2008, 18, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlichting, I. Serial femtosecond crystallography: The first five years. IUCrJ 2015, 2, 246–255. [Google Scholar] [CrossRef] [Green Version]
- Grünbein, M.L.; Shoeman, R.L.; Doak, R.B. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers. Opt. Express 2018, 26, 7190–7203. [Google Scholar] [CrossRef]
- Rayleigh, L. On the capillary phenomena of jets. Proc. R. Soc. Lond. 1879, 29, 71–97. [Google Scholar]
- Inguva, V.; Graceffa, R.; Schulz, J.; Bilsel, O.; Perot, B.J. Creating round focused micro-jets from rectangular nozzles. J. Mech. Sci. Technol. 2019, 33, 4281–4289. [Google Scholar] [CrossRef]
- Weierstall, U. Liquid sample delivery techniques for serial femtosecond crystallography. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130337. [Google Scholar] [CrossRef] [Green Version]
- Steinke, I.; Walther, M.; Lehmkühler, F.; Wochner, P.; Valerio, J.; Mager, R.; Schroer, M.A.; Lee, S.; Roseker, W.; Jain, A.; et al. A liquid jet setup for X-ray scattering experiments on complex liquids at free-electron laser sources. Rev. Sci. Instrum. 2016, 87, 063905. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.A.; Milathianaki, D.; Laksmono, H.; Sierra, R.G.; McQueen, T.A.; Messerschmidt, M.; Williams, G.J.; Koglin, J.E.; Lane, T.J.; Hayes, M.J.; et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 2016, 12, 966–971. [Google Scholar] [CrossRef]
- Chavas, L.; Gumprecht, L.; Chapman, H. Possibilities for serial femtosecond crystallography sample delivery at future light sources. Struct. Dyn. 2015, 2, 041709. [Google Scholar] [CrossRef] [PubMed]
- Altarelli, M.; Brinkmann, R.; Chergui, M.; Decking, W.; Dobson, B.; Düsterer, S.; Grübel, G.; Graeff, W.; Graafsma, H.; Hajdu, J.; et al. The European X-ray Free-Electron Laser Technical Design Report. DESY 2006, 97, 4. [Google Scholar]
- Tschentscher, T.; Bressler, C.; Grünert, J.; Madsen, A.; Mancuso, A.; Meyer, M.; Scherz, A.; Sinn, H.; Zastrau, U. Photon beam transport and scientific instruments at the European XFEL. Appl. Sci. 2017, 7, 592. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, A.P.; Aquila, A.; Batchelor, L.; Bean, R.J.; Bielecki, J.; Borchers, G.; Doerner, K.; Giewekemeyer, K.; Graceffa, R.; Kelsey, O.D.; et al. The Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography instrument of the European XFEL: Initial installation. J. Synchrotron Radiat. 2019, 26, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Dunne, M. LCLS Strategic Facility Development Plan; SLAC National Accelerator Laboratory: Menlo Park, CA, USA, 2017; p. 55. [Google Scholar]
- Sato, T.; LeTrun, R.; Kirkwood, H.; Liu, J.; Vagovic, P.; Mills, G.; Kim, Y.; Takem, C.; Planas, M.; Emons, M.; et al. Femtosecond timing synchronisation at megahertzrepetition rates for an X-ray Free-Electron Laser. Optica 2020. [Google Scholar] [CrossRef]
- Henrich, B.; Becker, J.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Hirsemann, H.; Klanner, R.; Krueger, H.; Mazzocco, R.; Mozzanica, A.; et al. The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 633, S11–S14. [Google Scholar] [CrossRef]
- Allahgholi, A.; Becker, J.; Delfs, A.; Dinapoli, R.; Goettlicher, P.; Greiffenberg, D.; Henrich, B.; Hirsemann, H.; Kuhn, M.; Klanner, R.; et al. The Adaptive Gain Integrating Pixel Detector at the European XFEL. J. Synchrotron Radiat. 2019, 26, 74–82. [Google Scholar] [CrossRef] [Green Version]
- DePonte, D.; Weierstall, U.; Schmidt, K.; Warner, J.; Starodub, D.; Spence, J.; Doak, R. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl.Phys. 2008, 41, 195505. [Google Scholar] [CrossRef] [Green Version]
- Wiedorn, M.O.; Oberthür, D.; Bean, R.; Schubert, R.; Werner, N.; Abbey, B.; Aepfelbacher, M.; Adriano, L.; Allahgholi, A.; Al-Qudami, N.; et al. Megahertz serial crystallography. Nat. Commun. 2018, 9, 4025. [Google Scholar] [CrossRef] [Green Version]
- Grünbein, M.L.; Bielecki, J.; Gorel, A.; Stricker, M.; Bean, R.; Cammarata, M.; Dörner, K.; Fröhlich, L.; Hartmann, E.; Hauf, S.; et al. Megahertz data collection from protein microcrystals at an X-ray free-electron laser. Nat. Commun. 2018, 9, 3487. [Google Scholar] [CrossRef]
- Yefanov, O.; Oberthür, D.; Bean, R.; Wiedorn, M.O.; Knoska, J.; Pena, G.; Awel, S.; Gumprecht, L.; Domaracky, M.; Sarrou, I.; et al. Evaluation of serial crystallographic structure determination within megahertz pulse trains. Struct. Dyn. 2019, 6, 064702. [Google Scholar] [CrossRef] [PubMed]
- Weierstall, U.; James, D.; Wang, C.; White, T.A.; Wang, D.; Liu, W.; Spence, J.C.; Doak, R.B.; Nelson, G.; Fromme, P.; et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fromme, R.; Ishchenko, A.; Metz, M.; Chowdhury, S.R.; Basu, S.; Boutet, S.; Fromme, P.; White, T.A.; Barty, A.; Spence, J.C.; et al. Serial femtosecond crystallography of soluble proteins in lipidic cubic phase. IUCrJ 2015, 2, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Kupitz, C.; Basu, S.; Grotjohann, I.; Fromme, R.; Zatsepin, N.A.; Rendek, K.N.; Hunter, M.S.; Shoeman, R.L.; White, T.A.; Wang, D.; et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 2014, 513, 261–265. [Google Scholar] [CrossRef]
- Gisriel, C.; Coe, J.; Letrun, R.; Yefanov, O.M.; Luna-Chavez, C.; Stander, N.E.; Lisova, S.; Mariani, V.; Kuhn, M.; Aplin, S.; et al. Membrane protein megahertz crystallography at the European XFEL. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bénas, P.; Auzeil, N.; Legrand, L.; Brachet, F.; Regazzetti, A.; Riès-Kautt, M. Weak protein–cationic co-ion interactions addressed by X-ray crystallography and mass spectrometry. Acta Crystallogr. Sect. D 2014, 70, 2217–2231. [Google Scholar] [CrossRef] [PubMed]
- Rossmanith, E. Concerning intensity profiles. Acta Crystallogr. Sect. A Found. Crystallogr. 2002, 58, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P.; Fromme, P.; Witt, H.T.; Klukas, O.; Saenger, W.; Krauß, N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 2001, 411, 909. [Google Scholar] [CrossRef]
- Szyperski, T. Room Temperature X-ray Crystallography Reveals Conformational Heterogeneity of Engineered Proteins. Structure 2017, 25, 691–692. [Google Scholar] [CrossRef]
- Weinert, T.; Olieric, N.; Cheng, R.; Brünle, S.; James, D.; Ozerov, D.; Gashi, D.; Vera, L.; Marsh, M.; Jaeger, K.; et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat. Commun. 2017, 8, 542. [Google Scholar] [CrossRef]
- Glownia, J.M.; Cryan, J.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C.; Bostedt, C.; Bozek, J.; DiMauro, L.; Fang, L.; et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 2010, 18, 17620–17630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, M.; Nango, E.; Tono, K.; Kimura, T.; Owada, S.; Song, C.; Mafuné, F.; Miyajima, K.; Takeda, Y.; Kohno, J.Y.; et al. Nanosecond pump–probe device for time-resolved serial femtosecond crystallography developed at SACLA. J. Synchrotron Radiat. 2017, 24, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Bean, R.; Sato, T.; Poudyal, I.; Bielecki, J.; Villarreal, J.C.; Yefanov, O.; Mariani, V.; White, T.A.; Kupitz, C.; et al. Time-resolved serial femtosecond crystallography at the European XFEL. Nat. Methods 2020, 17, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Barends, T.R.; Foucar, L.; Ardevol, A.; Nass, K.; Aquila, A.; Botha, S.; Doak, R.B.; Falahati, K.; Hartmann, E.; Hilpert, M.; et al. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 2015, 350, 445–450. [Google Scholar] [CrossRef]
- Geremia, S.; Campagnolo, M.; Demitri, N.; Johnson, L.N. Simulation of Diffusion Time of Small Molecules in Protein Crystals. Structure 2006, 14, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M. Mix and inject: Reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv. Condens. Matter Phys. 2013, 2013, 167276. [Google Scholar] [CrossRef] [Green Version]
- Stagno, J.; Liu, Y.; Bhandari, Y.; Conrad, C.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D.; et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 2017, 541, 242–246. [Google Scholar] [CrossRef]
- Calvey, G.D.; Katz, A.M.; Schaffer, C.B.; Pollack, L. Mixing injector enables time-resolved crystallography with high hit rate at X-ray free electron lasers. Struct. Dyn. 2016, 3, 054301. [Google Scholar] [CrossRef] [Green Version]
- Orville, A.M. Entering an era of dynamic structural biology…. BMC Biol. 2018, 16, 55. [Google Scholar] [CrossRef] [Green Version]
XFEL | Synchroton | |
---|---|---|
Completeness (%) | 100 (100) | 99.6 (98.3) |
Multiplicity | 213 (122) | 3.6 (1.9) |
CC1/2 | 0.88 (0.051) | 0.633 (0.655) |
CC* | 0.97 (0.31) | 0.991 (0.890) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mills, G.; Bean, R.; Mancuso, A.P. First Experiments in Structural Biology at the European X-ray Free-Electron Laser. Appl. Sci. 2020, 10, 3642. https://doi.org/10.3390/app10103642
Mills G, Bean R, Mancuso AP. First Experiments in Structural Biology at the European X-ray Free-Electron Laser. Applied Sciences. 2020; 10(10):3642. https://doi.org/10.3390/app10103642
Chicago/Turabian StyleMills, Grant, Richard Bean, and Adrian P. Mancuso. 2020. "First Experiments in Structural Biology at the European X-ray Free-Electron Laser" Applied Sciences 10, no. 10: 3642. https://doi.org/10.3390/app10103642
APA StyleMills, G., Bean, R., & Mancuso, A. P. (2020). First Experiments in Structural Biology at the European X-ray Free-Electron Laser. Applied Sciences, 10(10), 3642. https://doi.org/10.3390/app10103642