Special Issue “Orthopaedic and Rehabilitation Engineering”
Abstract
:1. Motion Biomechanics and Postural Stability
1.1. Simulation of Impact Loading on the Lower Leg
1.2. Simulation of Rapid Eversion Motion of the Foot and Ankle Sprain
1.3. Upper Limb Navigation during Simultaneous Control of Grasping and Walking
1.4. Effects of Muscle Fatigue
1.5. Standing Balance
2. Functional Electrical Stimulation (FES) of Muscles
2.1. Restoration
2.2. Force Augmentation by FES
2.3. Somatosensory and Motor Augmentation by TENS
3. Musculoskeletal Interactions
3.1. Muscle and Shock Absorption
3.2. Neuromuscular Interactions and Hybrid Activation
4. Neuromuscular Redundancies and Mechanical Indeterminacies
5. Optimization of Load Distribution in Artificial Joints and Orthopaedic Implants
6. The Contributions in This Special Issue
Funding
Acknowledgments
Conflicts of Interest
References
- Mizrahi, J. Mechanical impedance and its relations to motor control, limb dynamics, and motion biomechanics. J. Med. Biol. Eng. 2015, 35, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, P. Stress syndrome in athletes. N. Z. Med. J. 1979, 89, 223–225. [Google Scholar] [PubMed]
- Bailey, A.M.; McMurry, T.L.; Salzar, R.S.; Crandall, J.R. An injury risk function for the leg, foot, and ankle exposed to axial impact loading using force and impulse. J. Biomech. Eng. 2019, 141, 021009. [Google Scholar] [CrossRef] [PubMed]
- Mildon, P.J.; White, D.; Sedman, A.J.; Dorn, M.; Masouros, S.D. Injury risk of the human leg under high rate axial loading. Hum. Factors Mech. Eng. Def. Saf. 2018, 2, 5. [Google Scholar] [CrossRef]
- Radin, E.L. Role of muscles in protecting athletes from injury. Acta Med. Scand. Suppl. 1986, 711, 143–147. [Google Scholar] [CrossRef]
- Bourne, D.A.; Moo, E.K.; Herzog, W. Cartilage and chondrocyte response to extreme muscular loading and impact loading: Can in vivo pre-load decrease impact-induced cell death? Clin. Biomech. 2015, 30, 537–545. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, J.; Susak, Z. Elastic and damping response of the human leg to in vivo impact forces. J. Biomech. Eng. 1982, 104, 63–66. [Google Scholar] [CrossRef]
- Mizrahi, J.; Susak, Z. Analysis of parameters affecting impact force attenuation in landing of human vertical free fall. Eng. Med. 1982, 11, 141–147. [Google Scholar] [CrossRef]
- Rapoport, S.; Mizrahi, J.; Kimmel, E.; Verbitsky, O.; Isakov, E. Constant and variable stiffness and damping of the leg joints in human hopping. J. Biomech. Eng. 2003, 125, 507–514. [Google Scholar] [CrossRef]
- Fong, D.T.; Chan, Y.Y.; Mok, K.M.; Yung, P.S.; Chan, K.M. Understanding acute ankle ligamentous sprain injury in sports. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2009, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Waterman, B.R.; Owens, B.D.; Davey, S.; Zacchilli, M.A.; Belmont, P.J., Jr. The epidemiology of ankle sprains in the United States. J. Bone Joint Surg. Am. 2010, 92, 2279–2284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roach, K.E.; Foreman, K.B.; Barg, A.; Saltzman, C.L.; Anderson, A.E. Application of high-speed dual fluoroscopy to study in vivo tibiotalar and subtalar kinematics in patients with chronic ankle instability and asymptomatic control subjects during dynamic activities. Foot Ankle Int. 2017, 38, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, J.; Ramot, Y.; Susak, Z. The passive dynamics of the subtalar joint in sudden inversion of the foot. J. Biomech. Eng. 1990, 112, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Isakov, E.; Mizrahi, J.; Solzi, P.; Susak, Z. Response of the peroneal muscles to sudden inversion of the ankle during standing. Int. J. Sports Biomech. 1986, 2, 100–109. [Google Scholar] [CrossRef]
- Hunter, I.W.; Kearney, R.E. Invariance of ankle dynamic stiffness during fatiguing muscle contractions. J. Biomech. 1983, 16, 985–991. [Google Scholar] [CrossRef]
- Georgopoulos, A.P.; Grillner, S. Visuomotor coordination in reaching and locomotion. Science 1989, 245, 1209–1210. [Google Scholar] [CrossRef]
- Grasso, R.; Zago, M.; Lacquaniti, F. Interactions between posture and locomotion: Motor patterns in humans walking with bent posture versus erect posture. J. Neurophysiol. 2000, 83, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Van der Wel, R.P.; Rosenbaum, D.A. Coordination of locomotion and prehension. Exp. Brain Res. 2007, 176, 281–287. [Google Scholar] [CrossRef]
- Levin, O.; Ouamer, M.; Steyvers, M.; Swinnen, S.P. Directional tuning effects during cyclical two-joint arm movements in the horizontal plane. Exp. Brain Res. 2001, 141, 471–484. [Google Scholar] [CrossRef]
- Levin, O.; Forner-Cordero, A.; Li, Y.; Ouamer, M.; Swinnen, S.P. Evidence for adaptive shoulder-elbow control in cyclical movements with different amplitudes, frequencies, and orientations. J. Mot. Behav. 2008, 40, 499–515. [Google Scholar] [CrossRef]
- Roth, N.; Seliktar, R.; Mizrahi, J. Mechanical impedance control in the human arm while manually transporting an open-top fluid filled dish. Appl. Bionics. Biomech. 2011, 8, 393–404. [Google Scholar] [CrossRef]
- Tregoubov, V.P. Problems of mechanical model identification for human body under vibration. Mech. Mach. Theory 2000, 35, 491–504. [Google Scholar] [CrossRef]
- Mizrahi, J.; Voloshin, A.; Russek, D.; Verbitsky, O.; Isakov, E. The influence of fatigue on EMG and impact acceleration in running. Basic Appl. Myol. 1997, 7, 111–118. [Google Scholar]
- Kim, W.; Voloshin, A.S.; Simkin, A.; Milgrom, C.E. Study of the foot performance during intensive march. In Abstracts of the Sixth International Jerusalem Symposium on Sport Injuries; The Hebrew University of Jerusalem: Jerusalem, Israel, 1990; p. 40. [Google Scholar]
- Mizrahi, J.; Verbitsky, O.; Isakov, E.; Daily, D. Effect of fatigue on leg kinematics and shank shock in long distance running. Hum. Mov. Sci. 2000, 19, 139–151. [Google Scholar] [CrossRef]
- Mizrahi, J.; Verbitsky, O.; Isakov, E. Fatigue-related loading imbalance on the shank in running: A possible factor in stress fractures. Ann. Biomed. Eng. 2000, 28, 463–469. [Google Scholar] [CrossRef]
- Mizrahi, J.; Susak, Z. Bilateral reactive force patterns in postural sway activity of normal subjects. Biol. Cybern. 1989, 60, 297–305. [Google Scholar] [CrossRef]
- Levin, O.; Mizrahi, J. An iterative model for estimation of the trajectory of center of gravity from bilateral reactive force measurements in standing sway. Gait Posture 1996, 4, 89–99. [Google Scholar] [CrossRef]
- Isakov, E.; Mizrahi, J. Bilateral simultaneous measurement of standing ground reaction forces in hemiparetics, below-knee amputees and healthy adults. Basic Appl. Myol. 1997, 7, 97–102. [Google Scholar]
- Levin, O.; Mizrahi, J.; Shoham, M. Standing sway: Iterative estimation of the kinematics and dynamics of the lower extremities from forceplate measurements. Biol. Cybern. 1998, 78, 319–327. [Google Scholar] [CrossRef]
- Mak, M.K.; Levin, O.; Mizrahi, J.; Hui-Chan, C.W. Reduction of lower limb model indeterminacy by force redundancy in sit-to-stand motion. J. Appl. Biomech. 2004, 20, 95–102. [Google Scholar] [CrossRef]
- Mak, M.K.; Levin, O.; Mizrahi, J.; Hui-Chan, C.W. Joint torques during sit-to-stand in healthy subjects and people with Parkinson’s disease. Clin. Biomech. 2003, 18, 197–206. [Google Scholar] [CrossRef]
- Kralj, A.; Bajd, T.; Turk, R. Electrical stimulation providing functional use of paraplegic patient muscles. Med. Prog. Technol. 1980, 7, 3–9. [Google Scholar] [PubMed]
- Peng, C.W.; Chen, S.C.; Lai, C.H.; Chen, C.J.; Chen, C.C.; Mizrahi, J.; Handa, Y. Clinical benefits of functional electrical stimulation cycling exercise for subjects with central neurological impairments. J. Med. Biol. Eng. 2011, 31, 1–11. [Google Scholar] [CrossRef]
- Minzly, J.; Mizrahi, J.; Isakov, E.; Susak, Z.; Verbeke, M. Computer controlled portable stimulator for paraplegic patients. J. Biomed. Eng. 1993, 15, 333–338. [Google Scholar] [CrossRef]
- Isakov, E.; Mizrahi, J. FES system for self-activation: An electrical stimulator and instrumented walker. Clin. Rehabil. 1993, 7, 39–44. [Google Scholar] [CrossRef]
- Minzly, J.; Mizrahi, J.; Hakim, N.; Liberson, A. A stimulus artifact suppressor for EMG recording during FES by a constant current stimulator. Med. Biol. Eng. Comput. 1993, 31, 72–75. [Google Scholar] [CrossRef]
- Levy, M.; Mizrahi, J.; Susak, Z. Recruitment, force and fatigue characteristics of quadriceps muscles of paraplegics, isometrically activated by surface FES. J. Biomed. Eng. 1990, 12, 150–156. [Google Scholar] [CrossRef]
- Levy, M.; Kushnir, T.; Mizrahi, J.; Itzchak, Y. In vivo P-31 NMR studies of paraplegic’s muscles activated by functional electrical stimulation. Magn. Reson. Med. 1993, 29, 53–58. [Google Scholar] [CrossRef]
- Mizrahi, J. Fatigue in muscles activated by functional electrical stimulation. Crit Rev. Phys. Rehabil. Med. 1997, 9, 93–129. [Google Scholar] [CrossRef]
- Giat, Y.; Mizrahi, J.; Levy, M. A musculo-tendon model of the fatigue profiles of paralyzed quadriceps muscle under FES. IEEE Trans. Biomed. Eng. 1993, 40, 664–674. [Google Scholar] [CrossRef]
- Giat, Y.; Mizrahi, J.; Levy, M. A model of fatigue and recovery in paraplegic’s quadriceps muscle when subjected to intermittent stimulation. J. Biomech. Eng. 1996, 118, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, J.; Levin, O.; Aviram, A.; Isakov, E.; Susak, Z. Muscle fatigue in interrupted stimulation: Effect of partial recovery on force and EMG dynamics. J. Electromyogr. Kinesiol. 1997, 7, 51–65. [Google Scholar] [CrossRef]
- Levin, O.; Mizrahi, J. EMG and metabolic-based prediction of force in paralyzed quadriceps muscle under interrupted simulation. IEEE Trans. Rehab. Eng. 1999, 7, 301–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livshitz, L.; Einziger, P.; Mizrahi, J. Current distribution in skeletal muscle activated by FES: Image-series formulation and isometric recruitment curve. Ann. Biomed. Eng. 2000, 28, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Einziger, P.; Livshitz, L.; Mizrahi, J. Rigorous image series expansions of quasistatic Green’s functions for regions with planar stratification. IEEE Trans. Antenn. Propag. 2002, 50, 1813–1823. [Google Scholar] [CrossRef]
- Livshitz, L.; Einziger, P.; Mizrahi, J. A model of finite electrodes in layered media: Hybrid image series and moment method scheme. Appl. Comput. Electromagn. Soc. Newsl. 2001, 16, 145–154. [Google Scholar]
- Livshitz, L.M.; Mizrahi, J.; Einziger, P.D. Interaction of array of finite electrodes with layered biological tissue: Effect of electrode size and configuration. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 355–361. [Google Scholar] [CrossRef]
- Livshitz, L.M.; Einziger, P.D.; Mizrahi, J. Rigorous Green’s function for transmembrane potential induced along a 3-D infinite cylindrical cell. IEEE Trans. Biomed. Eng. 2002, 49, 1491–1503. [Google Scholar] [CrossRef]
- Einziger, P.D.; Livshitz, L.M.; Mizrahi, J. Generalized cable equation model for myelinated nerve fiber. IEEE Trans. Biomed. Eng. 2005, 52, 1632–1642. [Google Scholar] [CrossRef]
- Langzam, E.; Isakov, E.; Mizrahi, J. Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation. J. Neuroeng. Rehabil. 2006, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Langzam, E.; Nemirovsky, Y.; Isakov, E.; Mizrahi, J. Muscle enhancement using closed-loop electrical stimulation: Volitional versus induced torque. J. Electromyogr Kinesiol. 2007, 17, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Langzam, E.; Nemirovsky, Y.; Isakov, E.; Mizrahi, J. Partition between volitional and induced forces in electrically augmented dynamic muscle contractions. IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Naito, E.; Ehrsson, H.H.; Geyer, S.; Zilles, K.; Roland, P.E. Illusory arm movements activate cortical motor areas: A positron emission tomography study. J. Neurosci. 1999, 19, 6134–6144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radovanovic, S.; Korotkov, A.; Ljubisavljevic, M.; Lyskov, E.; Thunberg, J.; Kataeva, G.; Danko, S.; Roudas, M.; Pakhomov, S.; Medvedev, S.; et al. Comparison of brain activity during different types of proprioceptive inputs: A positron emission tomography study. Exp. Brain Res. 2002, 143, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Conforto, A.B.; Ferreiro, K.N.; Tomasi, C.; dos Santos, R.L.; Moreira, V.L.; Marie, S.K.; Baltieri, S.C.; Scaff, M.; Cohen, L.G. Effects of Somatosensory Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabil. Neural Repair 2010, 24, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Cuypers, K.; Levin, O.; Thijs, H.; Swinnen, S.P.; Meesen, R.L.J. Long-term TENS treatment improves tactile sensitivity in MS patients. Neurorehabil. Neural Repair 2010, 24, 420–427. [Google Scholar] [CrossRef]
- Meesen, R.L.; Cuypers, K.; Rothwell, J.C.; Swinnen, S.P.; Levin, O. The effect of long-term TENS on persistent neuroplastic changes in the human cerebral cortex. Hum. Brain Mapp. 2011, 32, 872–882. [Google Scholar] [CrossRef]
- Forner-Cordero, A.; Steyvers, M.; Levin, O.; Alaerts, K.; Swinnen, S.P. Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav. Brain Res. 2008, 190, 41–49. [Google Scholar] [CrossRef]
- Milgrom, C. The Israeli elite infantry recruit: A model for understanding the biomechanics of stress fractures. J. R. Coll. Surg. Edinb. 1989, 34, S18–S22. [Google Scholar]
- Fyhrie, D.P.; Milgrom, C.; Hoshaw, S.J.; Simkin, A.; Dar, S.; Drumb, D.; Burr, D.B. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann. Biomed. Eng. 1998, 26, 660–665. [Google Scholar] [CrossRef]
- Mizrahi, J.; Verbitsky, O.; Isakov, E. Shock accelerations and attenuation in downhill and level running. Clin. Biomech. 2000, 15, 15–20. [Google Scholar] [CrossRef]
- Verbitsky, O.; Mizrahi, J.; Voloshin, A.; Treiger, J.; Isakov, E. Shock transmission and fatigue in human running. J. Appl. Biomech. 1998, 14, 300–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voloshin, A.S.; Mizrahi, J.; Verbitsky, O.; Isakov, E. Dynamic loading on the human musculoskeletal system- effect of fatigue. Clin. Biomech. 1998, 13, 515–520. [Google Scholar] [CrossRef]
- Burke, M.J.; Roman, V.; Wright, V. Bone and joint changes in lower limb amputees. Ann. Rheum Dis. 1978, 37, 252–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, J.; Heisel, J.M.; Ullrich, C.H. Spatschaden am bewegungsapparat bei oberschenkelamputierten und deren begutachtung. Z Orthop. 1979, 117, 801–807. [Google Scholar]
- Rubin, C.T.; McLeod, K.J.; Lanyon, L.E. Prevention of osteoporosis by pulsed electromagnetic fields. J. Bone Joint Surg. Am. 1989, 71, 411–417. [Google Scholar] [CrossRef]
- McLeod, K.J.; Rubin, C.T. The effect of low-frequency electrical fields on osteogenesis. J. Bone Joint Surg. Am. 1992, 74, 920–929. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, J. The role of electromyograms in resolving musculoskeletal interactions in able-bodied and disabled human individuals. In Advances in Applied Electromyography; Mizrahi, J., Ed.; InTech: Rijeka, Croatia, 2011; pp. 3–24. [Google Scholar] [CrossRef] [Green Version]
- Shoji, J.; Kobayashi, K.; Ushiba, J.; Kagamihara, Y.; Masakado, Y. Inhibition from the plantar nerve to soleus muscle during the stance phase of walking. Brain Res. 2005, 1048, 48–58. [Google Scholar] [CrossRef]
- Binder-Macleod, S.A.; Dean, J.C.; Ding, J. Electrical stimulation factors in potentiation of human quadriceps femoris. Muscle Nerve 2002, 25, 271–279. [Google Scholar] [CrossRef]
- Eom, G.M.; Watanabe, T.; Hoshimiya, N.; Khang, G. Gradual potentiation of isometric muscle force during constant electrical stimulation. Med. Biol. Eng. Comput. 2002, 40, 137–143. [Google Scholar] [CrossRef]
- Ridding, M.C.; McKay, D.R.; Thompson, P.D.; Miles, T.S. Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin. Neurophysiol. 2001, 112, 1461–1469. [Google Scholar] [CrossRef]
- Thompson, K.; Stein, R.B. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp. Brain Res. 2004, 159, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Tirosh, E.; Isakov, E.; Mizrahi, J. Below-threshold FES in CP: Long-term training versus orthosis effect. In Proceedings of the 7th Terme Euganee Meeting on Rehabilitation, Padova, Italy, 14–15 June 2003; p. 233. [Google Scholar]
- Katz, A.; Tirosh, E.; Marmur, R.; Mizrahi, J. Enhancement of Muscle Activity by Electrical Stimulation in Cerebral Palsy–a Case Control Study. J. Child. Neurol. 2008, 23, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Everaert, D.G.; Thompson, A.K.; Chong, S.L.; Stein, R.B. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil. Neural. Repair. 2010, 24, 168–177. [Google Scholar] [CrossRef]
- Mizrahi, J. Muscle/bone Interactions in the Musculo-Skeletal System; The Center of Excellence for Applied Biomedical Modelling and Diagnostics: Warsaw, Poland, 2004; ISBN 1733-0874. [Google Scholar]
- Stanev, D.; Moustakas, K. Modeling musculoskeletal kinematic and dynamic redundancy using null space projection. PLoS ONE 2019, 14, e0209171. [Google Scholar] [CrossRef]
- Sohn, M.H.; McKay, J.L.; Ting, L.H. Defining feasible bounds on muscle activation in a redundant biomechanical task: Practical implications of redundancy. J. Biomech. 2013, 46, 1363–1368. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.P.T.; Ambrosio, J.A.C. Solution of redundant muscle forces in human locomotion with multibody dynamics and optimization tools. Mech. Based Des. Struc. 2003, 31, 381–411. [Google Scholar] [CrossRef]
- Roth, N.; Wiener, A.; Mizrahi, J. Methods for dynamic characterization of the major muscles activating the lower limb joints in cycling motion. Eur. J. Trans. Myol.-Basic Appl. Myol. 2014, 24, 163–171. [Google Scholar] [CrossRef]
- Mizrahi, J.; Livingstone, R.P.; Rogan, I.M. An experimental analysis of the stresses at the surface of Charnley prosthesis in different anatomical positions. J. Biomech. 1979, 12, 491–500. [Google Scholar] [CrossRef]
- Sun, C.; Wang, L.; Kang, J.; Li, D.; Jin, Z. Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J. Bionic. Eng. 2018, 15, 693–702. [Google Scholar] [CrossRef]
- Mizrahi, J.; Benaim, E. Minimization of the gliding index: Criterion for the generation of the surfaces of a knee endoprosthesis. J. Biomech. 1987, 20, 851–862. [Google Scholar] [CrossRef]
- Cilla, M.; Borgiani, E.; Martinez, J.; Duda, G.N.; Checa, S. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant. PLoS ONE 2017, 12, e0183755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mou, Z.; Dong, W.; Zhang, Z.; Wang, A.; Hu, G.; Wang, B.; Dong, Y. Optimization of parameters for femoral component implantation during TKA using finite element analysis and orthogonal array testing. J. Orthop. Surg. Res. 2018, 13, 179. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.Y.; Kuo, Y.J.; Chen, C.H.; Wu, L.C.; Chiang, C.J.; Lin, C.L. Biomechanical assessment of vertebroplasty combined with cement-augmented screw fixation for lumbar burst fractures: A finite element analysis. Appl. Sci. 2020, 10, 2133. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.C.; Chiang, M.H. Design and control of a 1-DOF robotic lower-limb system driven by novel single pneumatic artificial muscle. Appl. Sci. 2020, 10, 43. [Google Scholar] [CrossRef] [Green Version]
- Alkindi, M.; Ramalingam, S.; Moiduddin, K.; Alghamdi, O.; Alkhalefah, H.; Badwelan, M. In vitro biomechanical simulation testing of custom fabricated temporomandibular joint parts made of electron beam melted titanium, zirconia, and poly-methyl methacrylate. Appl. Sci. 2019, 9, 5455. [Google Scholar] [CrossRef] [Green Version]
- Krakowski, P.; Nogalski, A.; Jurkiewicz, A.; Karpinski, R.; Maciejewski, R.; Jonak, J. Comparison of diagnostic accuracy of physical examination and MRI in the most common knee injuries. Appl. Sci. 2019, 9, 4102. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A.; Jauregui-Correa, J.C. Support vector machine-based EMG signal classification techniques: A review. Appl. Sci. 2019, 9, 4402. [Google Scholar] [CrossRef] [Green Version]
- Scano, A.; Zanoletti, M.; Pirovano, I.; Spinelli, L.; Contini, D.; Torricelli, A.; Re, R. NIRS-EMG for clinical applications: A systematic review. Appl. Sci. 2019, 9, 2952. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizrahi, J.; Levin, O. Special Issue “Orthopaedic and Rehabilitation Engineering”. Appl. Sci. 2020, 10, 3556. https://doi.org/10.3390/app10103556
Mizrahi J, Levin O. Special Issue “Orthopaedic and Rehabilitation Engineering”. Applied Sciences. 2020; 10(10):3556. https://doi.org/10.3390/app10103556
Chicago/Turabian StyleMizrahi, Joseph, and Oron Levin. 2020. "Special Issue “Orthopaedic and Rehabilitation Engineering”" Applied Sciences 10, no. 10: 3556. https://doi.org/10.3390/app10103556
APA StyleMizrahi, J., & Levin, O. (2020). Special Issue “Orthopaedic and Rehabilitation Engineering”. Applied Sciences, 10(10), 3556. https://doi.org/10.3390/app10103556