Special Issue on Body Area Networks
Acknowledgments
Conflicts of Interest
References
- Mosenia, A.; Sur-Kolay, S.; Raghunathan, A.; Jha, N. Wearable medical sensor-based system design: A survey. IEEE Trans. Multi Scale Comput. Syst. 2017, 3, 124–138. [Google Scholar] [CrossRef]
- Guanglou, Z.; Shankaran, R.; Yang, W.; Valli, C.; Qiao, L.; Orgun, M.; Mukhopadhyay, S. A critical analysis of ECG-based key distribution for securing wearable and implantable medical devices. IEEE Sens. J. 2018, 19, 1186–1198. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wen, Y.; Zhao, D. Location verification algorithm of wearable sensors for wireless body area networks. Technol. Health Care 2018, 26, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Chao, L.; Zhenjiang, Z.; Fei, X.; Qing, L. An efficient and stable route protocol in wearable body networks. In Proceedings of the 2015 First International Conference on Computational Intelligence Theory, Systems and Applications (CCITSA), Yilan, Taiwan, 10–12 December 2015; pp. 104–109. [Google Scholar] [CrossRef]
- Leu, F.; Ko, C.; You, I.; Choo, K.; Ho, C. A smartphone-based wearable sensors for monitoring real-time physiological data. Comput. Electr. Eng. 2017, 65, 376–392. [Google Scholar] [CrossRef]
- Gholami, M.; Rezaei, A.; Cuthbert, T.J.; Napier, C.; Menon, C. Lower body kinematics monitoring in running using fabric-based wearable sensors and deep convolutional neural networks. Sensors 2019, 19, 5325. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Winkley, J.; Munnoch, R.; Min, G.; Yang, L. An intelligent information forwarder for healthcare big data systems with distributed wearable sensors. IEEE Syst. J. 2014, 10, 1147–1159. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Nie, Z.; Qin, W.; Pang, Z.; Wang, L. An approach to biometric verification based on human body communication in wearable devices. Sensors 2017, 17, 125. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-M.; Xiang, B.; Wu, T.-Y.; Wang, K.-H. An anonymous mutual authenticated key agreement scheme for wearable sensors in wireless body area networks. Appl. Sci. 2018, 8, 1074. [Google Scholar] [CrossRef] [Green Version]
- Antolín, D.; Medrano, N.; Calvo, B.; Pérez, F. A wearable wireless sensor network for indoor smart environment monitoring in safety applications. Sensors 2017, 17, 365. [Google Scholar] [CrossRef]
- Belmonte-Fernández, Ó.; Puertas-Cabedo, A.; Torres-Sospedra, J.; Montoliu-Colás, R.; Trilles-Oliver, S. An indoor positioning system based on wearables for ambient-assisted living. Sensors 2017, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.; Ma, J. Context-Aware scheduling in personal data collection from multiple wearable devices. IEEE Access 2017, 5, 2602–2614. [Google Scholar] [CrossRef]
- Song, X.; Wen, T.; Sun, W.; Zhang, D.; Guo, Q.; Zhang, Q. A coverage-aware unequal clustering protocol with load separation for ambient assisted living based on wireless sensor networks. China Commun. 2016, 13, 47–55. [Google Scholar] [CrossRef]
- Poncela, A.; Coslado, F.; García, B. Smart care home system: A platform for eAssistance. J. Ambient Intell. Hum. Comput. 2019, 10, 3997–4021. [Google Scholar] [CrossRef]
- Filho, R.; Neto, R.; Junior, I. A body sensor network simulation platform for medical applications. IEEE Lat. Am. Trans. 2016, 14, 1835–1841. [Google Scholar] [CrossRef]
- Huang, X.; Gao, X.; Yan, Z. Security protocols in body sensor networks using visible light communications. Int. J. Commun. Syst. 2015, 29, 2349–2363. [Google Scholar] [CrossRef]
- Bou Dargham, N.; Makhoul, A.; Bou Abdo, J.; Demerjian, J.; Guyeux, C. Efficient hybrid emergency aware mac protocol for wireless body sensor networks. Sensors 2018, 18, 3572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Y.; Liang, Y.; Shu, M.; Chen, C. An energy-efficient mac protocol for medical emergency monitoring body sensor networks. Sensors 2016, 16, 385. [Google Scholar] [CrossRef]
- Magno, M.; Polonelli, T.; Casamassima, F.; Gomez, A.; Farella, E.; Benini, L. Energy-Efficient context aware power management with asynchronous protocol for body sensor network. Mob. Netw. Appl. 2016, 22, 814–824. [Google Scholar] [CrossRef]
- Yu, D.; Kim, N. An efficient low-power MAC protocol for wireless body sensor networks. Int. J. Future Gener. Commun. Netw. 2016, 9, 257–268. [Google Scholar] [CrossRef]
- Di Franco, F.; Ge, Y.; Tinnirello, I. On-Body and off-body transmit power control in IEEE 802.15.6 scheduled access networks. In Proceedings of the IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 1254–1258. [Google Scholar] [CrossRef]
- Fourati, H.; Khssibi, S.; Val, T.; Idoudi, H.; Bossche, A.; Azzouz, L. Comparative Study of IEEE 802.15.4 and IEEE 802.15.6 for WBAN-based CANet. In Proceedings of the 4th Performance Evaluation and Modeling in Wireless Networks, Hammamet, Tunisia, 11–13 November 2015; Available online: https://oatao.univ-toulouse.fr/15422/1/fourati_15422.pdf (accessed on 20 May 2020).
- Ambigavathi, M.; Sridharan, D. Saturation throughput analysis of IEEE 802.15.6 under ideal transmission channel condition. Int. J. Comput. Intell. IoT 2018, 2, 4. Available online: https://ssrn.com/abstract=3361546 (accessed on 20 May 2020).
- Fatehy, M.; Kohno, R. A novel contention probability dynamism for IEEE 802.15.6 standard. J. Wirel. Commun. Netw. 2014, 92. [Google Scholar] [CrossRef] [Green Version]
- Jacob, A.; Kishore, G.; Jacob, L. Lifetime and latency analysis of IEEE 802.15.6 WBAN with interrupted sleep mechanism. Sadhana Acad. Proc. Eng. Sci. 2017, 42, 865–878. [Google Scholar] [CrossRef] [Green Version]
- Salehi, S.; Razzaque, M.; Tomeo-Reyes, I.; Hussain, N. IEEE 802.15.6 standard in wireless body area networks from a healthcare point of view. In Proceedings of the 22nd Asia-Pacific Conference on Communications (APCC), Yogyakarta, Indonesia, 25–27 August 2016; pp. 523–528. [Google Scholar] [CrossRef] [Green Version]
- Kwak, K.; Ullah, S.; Ullah, N. An overview of IEEE 802.15.6 standard. In Proceedings of the 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), Rome, Italy, 7–10 November 2010; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Christos, T.; Fabio, D.F.; David, T.; Nick, T.; Jim, M. An energy analysis of IEEE 802.15.6 scheduled access modes for medical applications. In Ad Hoc Networks Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2012; Volume 89, pp. 209–222. [Google Scholar] [CrossRef]
- Ullah, S.; Mohaisen, M.; Alnuem, M.A. A Review of IEEE 802.15.6 MAC, PHY, and security specifications. Int. J. Distrib. Sens. Netw. 2013, 9, 950704. [Google Scholar] [CrossRef]
- Navarro, J.; Vidaña-Vila, E.; Alsina-Pagès, R.M.; Hervás, M. Real-Time distributed architecture for remote acoustic elderly monitoring in residential-scale ambient assisted living scenarios. Sensors 2018, 18, 2492. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, E.; Lopez-Iturri, P.; Azpilicueta, L.; Rivarés, C.; Astrain, J.J.; Villadangos, J.; Falcone, F. Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring. Int. J. Distrib. Sens. Netw. 2016, 12. [Google Scholar] [CrossRef]
- Domingues, M.F.; Alberto, N.; Leitão, C.S.J.; Tavares, C.; de Lima, E.R.; Radwan, A.; Antunes, P.F. Insole optical fiber sensor architecture for remote gait analysis—An e-health solution. IEEE Internet Things J. 2017, 6, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Vegesna, A.; Tran, M.; Angelaccio, M.; Arcona, S. Remote patient monitoring via non-invasive digital technologies: A systematic review. Telemed. e Health 2017, 23, 3–17. [Google Scholar] [CrossRef]
- Pagan, J.; Fallahzadeh, R.; Pedram, M.; Risco-Martin, J.L.; Moya, J.M.; Ayala, J.L.; Ghasemzadeh, H. Toward ultra-low-power remote health monitoring: An optimal and adaptive compressed sensing framework for activity recognition. IEEE Trans. Mob. Comput. 2018, 18, 658–673. [Google Scholar] [CrossRef]
- Malasinghe, L.P.; Ramzan, N.; Dahal, K. Remote patient monitoring: A comprehensive study. J. Ambient Intell. Hum. Comput. 2019, 10, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Altini, M.; Penders, J.; Roebbers, H. An android-based body area network gateway for mobile health applications. In Proceedings of the Wireless Health, San Diego, CA, USA, 5–7 October 2010; pp. 188–189. [Google Scholar] [CrossRef]
- Rahmani, A.; Thanigaivelan, N.; Nguyengia, T.; Granados, J.; Negash, B.; Liljeberg, P.; Tenhunen, H. Smart e-health gateway: Bringing intelligence to internet-of-things based ubiquitous healthcare systems. In Proceedings of the 12th Annual IEEE Consumer Communications and Networking Conference, CCNC 2015, Las Vegas, NV, USA, 9–12 January 2015. [Google Scholar] [CrossRef]
- Fortino, G.; Fatta, G.; Pathan, M.; Vasilakos, A. Cloud-Assisted body area networks: State-of-the-art and future challenges. Wirel. Netw. 2014, 20, 1925–1938. [Google Scholar] [CrossRef]
- Wan, J.; Zou, C.; Ullah, S.; Lai, C.-F.; Zhou, M.; Wang, X. Cloud-Enabled wireless body area networks for pervasive healthcare. Netw. IEEE 2013, 27, 56–61. [Google Scholar] [CrossRef]
- Arya, S.P.; Kaushal, C. Cloud-Based wireless body area network for healthcare monitoring system. Adv. Comput. Sci. Inf. Technol. 2015, 2, 2393–9907. [Google Scholar]
- Quwaider, M.; Jararweh, Y. Cloud-Assisted data management in wireless body area networks. Int. J. Comput. Sci. Eng. 2017, 14, 16. [Google Scholar] [CrossRef]
- Li, C.; Lee, C.; Weng, C. A secure cloud-assisted wireless body area network in mobile emergency medical care system. J. Med. Syst. 2016, 40, 117. [Google Scholar] [CrossRef]
- Vera, D.; Costa, N.; Roda-Sanchez, L.; Olivares, T.; Fernández-Caballero, A.; Pereira, A. Body area networks in healthcare: A brief state of the art. Appl. Sci. 2019, 9, 3248. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-E.; Kang, T.; Oh, K.-I.; Park, M.J.; Park, H.-I.; Lim, I.G.; Lee, J.-J. Energy management integrated circuit for multi-source energy harvesters in WBAN applications. Appl. Sci. 2018, 8, 1262. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Nishida, Y.; Sasaki, K.; Muramatsu, D.; Koshiji, F. Electromagnetic field analysis of signal transmission path and electrode contact conditions in human body communication. Appl. Sci. 2018, 8, 1539. [Google Scholar] [CrossRef] [Green Version]
- Cwalina, K.K.; Ambroziak, S.J.; Rajchowski, P. An off-body narrowband and ultra-wide band channel model for body area networks in a ferryboat environment. Appl. Sci. 2018, 8, 988. [Google Scholar] [CrossRef] [Green Version]
- Cwalina, K.K.; Ambroziak, S.J.; Rajchowski, P.; Sadowski, J.; Stefanski, J. A novel bitrate adaptation method for heterogeneous wireless body area networks. Appl. Sci. 2018, 8, 1209. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-S.; Shah, B.; Al-Obediat, F.; Ullah, S.; Kim, K.H.; Kim, K.-I. An enhanced mobility and temperature aware routing protocol through multi-criteria decision making method in wireless body area networks. Appl. Sci. 2018, 8, 2245. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-A.; Wu, C.; Abu, P.A.R.; Chen, S.-L. VLSI implementation of an efficient lossless EEG compression design for wireless body area network. Appl. Sci. 2018, 8, 1474. [Google Scholar] [CrossRef] [Green Version]
- Park, M.J.; Kang, T.; Lim, I.G.; Oh, K.-I.; Kim, S.-E.; Lee, J.-J.; Park, H.-I. Low-Power, high data-rate digital capsule endoscopy using human body communication. Appl. Sci. 2018, 8, 1414. [Google Scholar] [CrossRef] [Green Version]
- Ni, Q.; Zhang, L.; Li, L. A heterogeneous ensemble approach for activity recognition with integration of change point-based data segmentation. Appl. Sci. 2018, 8, 1695. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.; Costa, N.; Fernández-Caballero, A. Special Issue on Body Area Networks. Appl. Sci. 2020, 10, 3540. https://doi.org/10.3390/app10103540
Pereira A, Costa N, Fernández-Caballero A. Special Issue on Body Area Networks. Applied Sciences. 2020; 10(10):3540. https://doi.org/10.3390/app10103540
Chicago/Turabian StylePereira, António, Nuno Costa, and Antonio Fernández-Caballero. 2020. "Special Issue on Body Area Networks" Applied Sciences 10, no. 10: 3540. https://doi.org/10.3390/app10103540
APA StylePereira, A., Costa, N., & Fernández-Caballero, A. (2020). Special Issue on Body Area Networks. Applied Sciences, 10(10), 3540. https://doi.org/10.3390/app10103540