Performance of Tilting Pad Journal Bearings with the Same Sommerfeld Number
Abstract
:1. Introduction
2. Numerical Modeling of Tilting Pad Journal Bearing
2.1. Generalized Reynolds Equation
2.2. Energy Equation
2.3. Flexible Pad Model and Nonlinear Pivot Model
2.4. Bearing-Journal Model
3. Simulation Results and Discussions
3.1. Simulation Model
3.2. Bearing Static and Dynamic Characteristics
3.3. Bearing Thermal Behavior
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Film Thickness | |
Lubricant viscosity | |
Shaft surface linear velocity | |
Time | |
Nodal normal fluid force acting on the bearing pad and spinning journal | |
X-Component of Journal Position | |
Y-Component of Journal Position | |
Bearing Clearance | |
Pad number | |
Nodal position in circumferential direction | |
Nodal position in axial direction | |
Number of nodes in circumferential direction of the lubricant FE model | |
Number of nodes in axial direction of the lubricant FE model | |
Journal radial center | |
Angular position of node () | |
Moment of inertia of the pad in axis | |
Moment of inertia of the pad in axis | |
Moment of inertia of the pad in axis | |
Local axis for the journal radial position | |
Local axis for the journal angular position | |
Local axis for the pad angular position | |
Pad tilt angle | |
Pad pitch angle | |
Pad yaw angle | |
Pivot displacement | |
Circumferential nodal position | |
Axial nodal position | |
Pad clearance | |
Journal angular position in x direction | |
Journal angular position in y direction | |
Pivot angular position | |
Journal radius |
References
- Someya, T. Journal-Bearing Databook; Springer: Berlin, Germany, 1989. [Google Scholar]
- Lund, J.W. Spring and Damping Coefficients for the Tilting-Pad Journal Bearing. ASLE Trans. 1964, 7, 342–352. [Google Scholar] [CrossRef]
- Dowson, D.; Hudson, J.D.; Hunter, B.; March, C.N. Paper 3: An Experimental Investigation of the Thermal Equilibrium of Steadily Loaded Journal Bearings. Proc. Inst. Mech. Eng. Conf. Proc. 1966, 181, 70–80. [Google Scholar] [CrossRef]
- Khonsari, M.M.; Jang, J.Y.; Fillon, M. On the Generalization of Thermohydrodynamic Analyses for Journal Bearings. J. Tribol. 1996, 118, 571–579. [Google Scholar] [CrossRef]
- Brockett, T.S.; Barrett, L.E.; Allaire, P.E. Thermoelastohydrodynamic Analysis of Fixed Geometry Thrust Bearings Including Runner Deformation. Tribol. Trans. 1996, 39, 555–562. [Google Scholar] [CrossRef]
- Kim, J.; Palazzolo, A.B.; Gadangi, R.K. TEHD Analysis for Tilting-Pad Journal Bearings Using Upwind Finite Element Method. Tribol. Trans. 1994, 37, 771–783. [Google Scholar] [CrossRef]
- Fillon, M.; Bligoud, J.-C.; Frêne, J. Experimental Study of Tilting-Pad Journal Bearings—Comparison with Theoretical Thermoelastohydrodynamic Results. J. Tribol. 1992, 114, 579–587. [Google Scholar] [CrossRef]
- Monmousseau, P.; Fillon, M. Frequency Effects on the TEHD Behavior of a Tilting-Pad Journal Bearing Under Dynamic Loading. J. Tribol. 1999, 121, 321–326. [Google Scholar] [CrossRef]
- Nilsson, L. The Influence of Bearing Flexibility on the Dynamic Performance of Radial Oil Film Bearings. In Proceedings of the 5th Leeds-Lyon Symposium on Tribology, Lyon, France, 6–9 September 1978; pp. 311–319. [Google Scholar]
- Kirk, R.G.; Reedy, S.W. Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs. J. Vib. Acoust. 1988, 110, 165–171. [Google Scholar] [CrossRef]
- Wilkes, J.C.; Childs, D.W. Tilting Pad Journal Bearings—A Discussion on Stability Calculation, Frequency Dependence, and Pad and Pivot Flexibility. ASME J. Eng. Gas Turbines Power 2012, 134, 122508. [Google Scholar] [CrossRef]
- Gaines, J. Examining the Impact of Pad Flexibility on the Rotordynamic Coefficients of Rocker-Pivot-Pad Tiling-Pad Journal Bearings. Master’s Thesis, Mechanical Engineering, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Andres, L.S.; Li, Y. Effect of Pad Flexibility on the Performance of Tilting Pad Journal Bearings—Benchmarking a Predictive Model. J. Eng. Gas Turbines Power 2015, 137, 122503. [Google Scholar] [CrossRef]
- Andres, L.S.; Tao, Y.; Li, Y. Tilting Pad Journal Bearings: On Bridging the Hot Gap Between Experimental Results and Model Predictions. J. Eng. Gas Turbines Power 2014, 137, 022505. [Google Scholar] [CrossRef]
- DeCamillo, S.M.; He, M.; Cloud, C.H.; Byrne, J.M. Journal Bearing Vibration and SSV Hash. In Proceedings of the 37th Turbomachinery Symposium, Houston, TX, USA, 7–11 September 2008. [Google Scholar]
- Gomiciaga, R.; Keogh, P.S. Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings. J. Tribol. 1999, 121, 77–84. [Google Scholar] [CrossRef]
- Andres, L.S.; Koo, B.; Hemmi, M. A Flow Starvation Model for Tilting Pad Journal Bearings and Evaluation of Frequency Response Functions: A Contribution Toward Understanding the Onset of Low Frequency Shaft Motions. J. Eng. Gas Turbines Power 2018, 140, 052506. [Google Scholar] [CrossRef]
- Dimond, T.W.; Younan, A.A.; Allaire, P. Comparison of Tilting-Pad Journal Bearing Dynamic Full Coefficient and Reduced Order Models Using Modal Analysis (GT2009-60269). J. Vib. Acoust. 2010, 132, 051009. [Google Scholar] [CrossRef]
- Suh, J.; Palazzolo, A. Three-Dimensional Dynamic Model of TEHD Cylindrical-Pivot Tilting-Pad Bearing, Part I: Numerical Modeling. J. Tribol. 2015, 117, 041703. [Google Scholar] [CrossRef]
- Suh, J.; Palazzolo, A. Three-Dimensional Dynamic Model of TEHD Cylindrical-Pivot Tilting-Pad Bearing, Part II: Parametric Studies. J. Tribol. 2015, 117, 041704. [Google Scholar] [CrossRef]
- Suh, J.; Palazzolo, A.B. Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model. J. Tribol. 2014, 136, 031706. [Google Scholar] [CrossRef]
- Young, W.C.; Budynas, R.G. Roark’s Formulas for Stress and Strain; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Suh, J.; Choi, Y.-S. Pivot design and angular misalignment effects on tilting pad journal bearing characteristics: Four pads for load on pad configuration. Tribol. Int. 2016, 102, 580–599. [Google Scholar] [CrossRef]
- Dimond, T.; Younan, A.; Allaire, P. A Review of Tilting Pad Bearing Theory. Int. J. Rotating Mach. 2011, 2011, 1–23. [Google Scholar] [CrossRef] [Green Version]
Lubricant Properties | Value |
---|---|
Viscosity at 40 °C (N·s/m2) | 0.0365 |
Viscosity coefficient (Pa·s) | 0.0297 |
Heat capacity (J/kg °C) | 1886 |
Heat conductivity (W/(mK)) | 0.136 |
Lubricant supply temperature (°C) | 50 |
Density (kg/m3) | 877 |
Bearing | |
Load type | LBP |
Number of pads | 5 |
Pad arc length (°) | 60 |
Offset | 0.5 |
Preload | 0.4 |
Load direction (deg.) | 270 (−y) |
Journal Material | |
Young’s Modulus (Pa) | 2.05 × 1011 |
Density (kg/m3) | 7850 |
Poison’s Ratio | 0.3 |
Heat Capacity (J/(kg °C)) | 453.6 |
Heat Conductivity (W/(m °C)) | 42.6 |
Therm. Exp. Coeff (1/ °C) | 0.0000122 |
Ref. Temp. for T.exp (°C) | 25 |
Pad Material | |
Young’s Modulus (Pa) | 2.00 × 1011 |
Density (kg/m3) | 7858 |
Poison’s Ratio | 0.3 |
Heat Capacity (J/(kg °C) | 453.6 |
Heat Conductivity (W/(m °C)) | 51.9 |
Therm. Exp. Coeff (1/°C) | 0.0000121 |
Ref. Temp. for Texp (°C) | 25 |
Babbit Material | |
Young’s Modulus (Pa) | 5.3 × 1010 |
Density (kg/m3) | 7390 |
Poison’s Ratio | 0.3 |
Heat Capacity (J/(kg °C) | 230 |
Heat Conductivity (W/(m °C)) | 55 |
Therm. Exp. Coeff (1/°C) | 0.000021 |
Ref. Temp. for Texp (°C) | 25 |
Housing Material | |
Young’s Modulus (Pa) | 1.86 × 1011 |
Poison’s Ratio | 0.3 |
Scale No. | Journal Diameter (mm) | Pad Thickness (mm) | Babbit Thickness (mm) | Dp (mm) | Dh (mm) | Pad Clearance (mm) | Pad Length (mm) | Bearing Load (N) |
---|---|---|---|---|---|---|---|---|
1 | 35 | 5 | 0.5 | 38 | 45 | 0.032 | 25 | 1230 |
2 | 70 | 10 | 1 | 76 | 90 | 0.064 | 50 | 4920 |
3 | 105 | 15 | 1.5 | 114 | 135 | 0.096 | 75 | 11,070 |
4 | 140 | 20 | 2 | 152 | 180 | 0.128 | 100 | 19,680 |
5 | 175 | 25 | 2.5 | 190 | 225 | 0.16 | 125 | 30,750 |
6 | 210 | 30 | 3 | 228 | 270 | 0.192 | 150 | 44,280 |
7 | 245 | 35 | 3.5 | 266 | 315 | 0.224 | 175 | 60,270 |
Running Condition | 1 | 2 | 3 |
---|---|---|---|
Rotor spin speed (rpm) | 500 | 1000 | 3600 |
Sommerfeld Number | 0.065 | 0.129 | 0.466 |
Unit Load | 1.41 | 1.41 | 1.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeung, S.-H.; Suh, J.; Yoon, H.S. Performance of Tilting Pad Journal Bearings with the Same Sommerfeld Number. Appl. Sci. 2020, 10, 3529. https://doi.org/10.3390/app10103529
Jeung S-H, Suh J, Yoon HS. Performance of Tilting Pad Journal Bearings with the Same Sommerfeld Number. Applied Sciences. 2020; 10(10):3529. https://doi.org/10.3390/app10103529
Chicago/Turabian StyleJeung, Sung-Hwa, Junho Suh, and Hyun Sik Yoon. 2020. "Performance of Tilting Pad Journal Bearings with the Same Sommerfeld Number" Applied Sciences 10, no. 10: 3529. https://doi.org/10.3390/app10103529
APA StyleJeung, S.-H., Suh, J., & Yoon, H. S. (2020). Performance of Tilting Pad Journal Bearings with the Same Sommerfeld Number. Applied Sciences, 10(10), 3529. https://doi.org/10.3390/app10103529