The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization of Samples
2.3. Fractal Analysis
3. Results and Discussion
3.1. Microstructural Analysis
3.1.1. STEM-EDX
3.1.2. FESEM Analysis
3.2. Dielectric Properties
3.3. Dielectric Constant Fractal Correction
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Slimani, Y.; Unal, B.; Hannachi, E.; Selmi, A.; Almessiere, M.A.; Nawaz, M.; Baykal, A.; Ercan, I.; Yildiz, M. Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3–SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 2019, 45, 11989–12000. [Google Scholar] [CrossRef]
- Beuerlein, M.A.; Kumar, N.; Usher, T.M.; Brown-Shaklee, H.J.; Raengthon, N.; Reaney, I.M.; Cann, D.P.; Jones, J.L.; Brennecka, G.L. Current understanding of structure–processing–property relationships in BaTiO3–Bi(M)O3 Dielectrics. J. Am. Ceram. Soc. 2016, 99, 2849–2870. [Google Scholar] [CrossRef][Green Version]
- Hou, Y.; Xie, C.; Radmilovic, V.V.; Puscher, B.; Wu, M.; Heumüller, T.; Karl, A.; Li, N.; Tang, X.; Meng, W.; et al. Assembling mesoscale-structured organic interfaces in perovskite photovoltaics. Adv. Mater. 2019, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jeangros, Q.; Duchamp, M.; Werner, J.; Kruth, M.; Dunin-Borkowski, R.E.; Niesen, B.; Ballif, C.; Hessler-Wyser, A. In situ TEM analysis of organic-inorganic metal-halide perovskite solar cells under electrical bias. Nano Lett. 2016, 16, 7013–7018. [Google Scholar] [CrossRef]
- Ihlefeld, J.F.; Harris, D.T.; Keech, R.; Jones, J.L.; Maria, J.P.; Trolier-McKinstry, S. Scaling effects in perovskite ferroelectrics: Fundamental limits and process-structure-property relations. J. Am. Ceram. Soc. 2016, 99, 2537–2557. [Google Scholar] [CrossRef]
- Wang, S.F.; Hsu, Y.F.; Hung, Y.W.; Liu, Y.X. Effect of Ta2O5 and Nb2O5 dopants on the stable dielectric properties of BaTiO3-(Bi0.5Na0.5)TiO3-based materials. Appl. Sci. 2015, 5, 1221–1234. [Google Scholar] [CrossRef][Green Version]
- Guzu, A.; Ciomaga, C.E.; Airimioaei, M.; Padurariu, L.; Curecheriu, L.P.; Dumitru, I.; Gheorghiu, F.; Stoian, G.; Grigoras, M.; Lupu, N.; et al. Functional properties of randomly mixed and layered BaTiO3—CoFe2O4 ceramic composites close to the percolation limit. J. Alloys Compd. 2019, 796, 55–64. [Google Scholar] [CrossRef]
- Sato, Y.; Aoki, M.; Teranishi, R.; Kaneko, K.; Takesada, M.; Moriwake, H.; Takashima, H.; Hakuta, Y. Atomic-scale observation of titanium-ion shifts in barium titanate nanoparticles: Implications for ferroelectric applications. ACS Appl. Nano Mater. 2019, 2, 5761–5768. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, X.; Gong, H.; Wu, L.; Li, L. Effect of MnO2 on the electrical and dielectric properties of Y-doped Ba0.95Ca0.05Ti0.85Zr0.15O3 ceramics in reducing atmosphere. Ceram. Int. 2014, 40, 13833–13839. [Google Scholar] [CrossRef]
- Zhang, M.; Zhai, J.; Xin, L.; Yao, X. Effect of biased electric field on the properties of ferroelectric-dielectric composite ceramics with different phase-distribution patterns. Mater. Chem. Phys. 2017, 197, 36–46. [Google Scholar] [CrossRef]
- Yu, Z.; Ang, C.; Guo, R.; Bhalla, A.S. Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O3 ceramics under dc electric field. Appl. Phys. Lett. 2002, 81, 1285–1287. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Zhang, S.; Li, L. Synergistic effect of rare-earth elements on the dielectric properties and reliability of BaTiO3-based ceramics for multilayer ceramic capacitors. Mater. Res. Bull. 2016, 73, 233–239. [Google Scholar] [CrossRef]
- Daniels, J. Defect chemistry and electrical-conductivity of doped barium-titanate ceramics 2. Defect equilibria in acceptor-doped barium-titanate. Philips Res. Rep. 1976, 31, 505–515. [Google Scholar]
- Hennings, D.F.K. Dielectric materials for sintering in reducing atmospheres. J. Eur. Ceram. Soc. 2001, 21, 1637–1642. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Putasaeng, B.; Thongbai, P. Origin of significantly enhanced dielectric response and nonlinear electrical behavior in Ni2+-doped CaCu3Ti4O12: Influence of DC bias on electrical properties of grain boundary and associated giant dielectric properties. Ceram. Int. 2019, 45, 6944–6949. [Google Scholar] [CrossRef]
- Mitrovic, I.; Mitic, V.V. BaTiO3-ceramics electrical model based on intergranular contacts. J. Eur. Ceram. Soc. 2001, 21, 2771–2775. [Google Scholar] [CrossRef]
- Mitic, V.V.; Nikolic, Z.S.; Pavlovic, V.B.; Paunovic, V.; Miljkovic, M.; Jordovic, B.; Zivkovic, L. Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties. J. Am. Ceram. Soc. 2010, 93, 132–137. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature, 1st ed.; W. H. Freeman and Company: San Francisco, CA, USA, 1982. [Google Scholar]
- Barnsley, M.F. Fractals Everywhere, 2nd ed.; Morgan Kaufmann: Burlington, MA, USA, 1993. [Google Scholar]
- Even, U.; Rademann, K.; Jortner, J.; Manor, N.; Reisfeld, R. Direct electronic energy transfer on fractals. J. Lumin. 1984, 31, 634–638. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Mitic, V.V.; Kocic, L.; Paunovic, V.; Lazović, G.; Miljkovic, M. Fractal nature structure reconstruction method in designing microstructure properties. Mater. Res. Bull. 2018, 101, 175–183. [Google Scholar] [CrossRef]
- Mitic, V.V.; Paunović, V.; Lazovic, G.; Kocic, L.; Vlahovic, B. Clausius–Mossotti relation fractal modification. Ferroelectrics 2018, 536, 60–76. [Google Scholar] [CrossRef]
- Mitic, V.V.; Lazovic, G.; Paunovic, V.; Cvetkovic, N.; Jovanovic, D.; Veljkovic, S.; Randjelovic, B.; Vlahovic, B. Fractal frontiers in microelectronic ceramic materials. Ceram. Int. 2019, 45, 9679–9685. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Zhang, S.; Wen, H.; Li, L. Grain size effect on electrical and reliability characteristics of modified fine-grained BaTiO3 ceramics for MLCCs. J. Eur. Ceram. 2014, 34, 1733–1739. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Du, G.; Chen, N. Low temperature preparation of CaCu3Ti4O12 ceramics with high permittivity and low dielectric loss. Ceram. Int. 2017, 43, 9178–9183. [Google Scholar] [CrossRef]
- Zhao, Z.; Buscaglia, V.; Viviani, M.; Buscaglia, M.T.; Mitoseriu, L.; Testino, A.; Nygren, M.; Johnsson, M.; Nanni, P. Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B Cond. Matter 2004, 70, 024107. [Google Scholar] [CrossRef]
Spectrum | In Stats. | O | Si | Ti | Y | Ba | Total |
---|---|---|---|---|---|---|---|
Spectrum 1 | Yes | 18.12 | 0.18 | 18.30 | 0.38 | 63.01 | 100.00 |
Spectrum 2 | Yes | 18.17 | −0.24 | 18.36 | 0.77 | 62.96 | 100.00 |
Spectrum 3 | Yes | 16.43 | 0.32 | 19.61 | 1.55 | 62.09 | 100.00 |
Spectrum 4 | Yes | 16.61 | 0.28 | 17.64 | 1.21 | 64.26 | 100.00 |
Spectrum 5 | Yes | 19.38 | 0.00 | 17.68 | 1.63 | 61.32 | 100.00 |
Spectrum 6 | Yes | 15.80 | 0.02 | 16.92 | 1.01 | 66.26 | 100.00 |
Spectrum 7 | Yes | 17.35 | −0.07 | 18.14 | 0.95 | 63.63 | 100.00 |
Mean | 17.41 | 0.07 | 18.09 | 1.07 | 63.36 | 100.00 | |
Std. deviation | 1.24 | 0.20 | 0.83 | 0.44 | 1.60 | ||
Max. | 19.38 | 0.32 | 19.61 | 1.63 | 66.26 | ||
Min. | 15.80 | −0.24 | 16.92 | 0.38 | 61.32 |
Spectrum | In Stats. | O | Si | Ti | Y | Ba | Total |
---|---|---|---|---|---|---|---|
Spectrum 1 | Yes | 9.49 | 0.15 | 17.30 | 2.25 | 63.60 | 100.00 |
Spectrum 2 | Yes | 10.67 | 0.11 | 17.66 | 2.02 | 63.16 | 100.00 |
Spectrum 3 | Yes | 11.89 | 0.16 | 17.46 | 2.68 | 61.16 | 100.00 |
Spectrum 4 | Yes | 13.29 | −0.10 | 15.76 | 2.37 | 62.73 | 100.00 |
Spectrum 5 | Yes | 12.19 | −0.02 | 17.11 | 2.32 | 61.51 | 100.00 |
Spectrum 6 | Yes | 12.56 | 0.02 | 18.12 | 2.12 | 60.38 | 100.00 |
Spectrum 7 | Yes | 11.37 | 0.06 | 18.46 | 2.51 | 60.84 | 100.00 |
Mean | 12.46 | 0.05 | 18.65 | 2.49 | 66.32 | 100.00 | |
Std. deviation | 1.26 | 0.09 | 0.87 | 0.23 | 1.25 | ||
Max. | 13.29 | 0.16 | 18.46 | 2.68 | 63.60 | ||
Min. | 9.49 | −0.10 | 15.76 | 2.02 | 60.38 |
C change, % | 100 | 100.32 | 101.28 | 100.97 | 100.64 | 100.64 | 100.32 | 100.16 | 93.13 | 78.90 | 0 |
DC bias, V | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
C change, % | 100.16 | 100.01 | 98.76 | 97.50 | 95.49 | 93.13 | 90.94 | 88.44 | 86.25 | 83.43 | 78.90 | 74.21 | 70.78 | 67.17 | 33.70 |
DC bias, V | 70 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | 88 | 90 | 92 | 94 | 96 | 98 |
C change, % | 100 | 106.90 | 108.14 | 108.14 | 0 |
DC bias, V | 0 | 1 | 2 | 3 | 3.83 |
C change, % | 100 | 101.28 | 103.14 | 104.40 | 105.64 | 106.90 | 107.21 | 107.52 | 108.14 | 108.14 | 108.14 |
DC bias, V | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | 1.2 | 1.4 | 1.6 | 1.8 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitic, V.V.; Lazovic, G.; Lu, C.-A.; Paunovic, V.; Radovic, I.; Stajcic, A.; Vlahovic, B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. Appl. Sci. 2020, 10, 3485. https://doi.org/10.3390/app10103485
Mitic VV, Lazovic G, Lu C-A, Paunovic V, Radovic I, Stajcic A, Vlahovic B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. Applied Sciences. 2020; 10(10):3485. https://doi.org/10.3390/app10103485
Chicago/Turabian StyleMitic, Vojislav V., Goran Lazovic, Chun-An Lu, Vesna Paunovic, Ivana Radovic, Aleksandar Stajcic, and Branislav Vlahovic. 2020. "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers" Applied Sciences 10, no. 10: 3485. https://doi.org/10.3390/app10103485