Organic and Conventional Herbs Quality Reflected by Their Antioxidant Compounds Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polyphenols Analysis
2.2. Carotenoids Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kudełka, W.; Kosowska, A. Components of spices and herbs determining their functional properties and their role in human nutrition and prevention of diseases. Cracow Rev. Econ. Manag. 2008, 781, 83–111. [Google Scholar]
- De Vincenzi, M.; Stammati, A.; De Vincenzi, A.; Silano, M. Constituents of aromatic plants: Carvacrol. Adv. Phytother. 2004, 75, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Hinneburg, J.; Dorman, H.J.D.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Prasad, W.; Khamrui, K.; Mandal, S.; Badola, R. Anti-oxidative, physico-chemical and sensory attributes of burfi affected by incorporation of different herbs and its comparison with synthetic anti-oxidant (BHA). J. Food Sci. Technol. 2017, 54, 3802–3809. [Google Scholar] [CrossRef]
- Eurostat Database. 2018. Available online: https://ec.europa.eu/eurostat (accessed on 4 April 2020).
- Luczka-Bakuła, W. Organic Food Market; PWE: Warsaw, Poland, 2007. [Google Scholar]
- Council Regulation (EC). No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Off. J. Eur. Union L 2007, 189, 20–27. [Google Scholar]
- Peter, K.V. Hand Book of Herbs and Spices; Chapter 4. Other Decontamination Techniques for Herbs and Spices, Organic Production; CRC Press: Boca Raton, FL, USA; Boston, MA, USA; New York, NY, USA; Washington, DC, USA, 2006; pp. 74–85. [Google Scholar]
- Young, J.E.; Zhao, X.; Carey, E.E.; Welti, R.; Yang, S.-S.; Wang, W. Phytochemical phenolics in organically grown vegetables. Mol. Nutrit. Food Res. 2005, 49, 1136–1142. [Google Scholar] [CrossRef]
- Chan, C.L.; Gan, R.Y.; Shah, N.P.; Corke, H. Polyphenols from selected dietary spices and medicinal herbs differentially affect common food-borne pathogenic bacteria and lactic acid bacteria. Food Control 2018, 92, 437–443. [Google Scholar] [CrossRef]
- Opara, E.I.; Chohan, M. Culinary herbs and spices: Their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int. J. Mol. Sci. 2014, 15, 19183–19202. [Google Scholar] [CrossRef] [Green Version]
- Asadi-Samiani, M.; Kooti, W.; Alsani, E.; Shirzad, H. A systematic review of Iran’s medicinal plants with anticancer effects. J. Evid. Based Complement. Alternat. Med. 2016, 21, 143–153. [Google Scholar] [CrossRef]
- Rao, R.R.; Rajput, D.K. Organic Farming: Medicinal and Aromatic Plants; Invited Pupers Und Extended Summaries; lndian Council of agricultural research: New Delhi, India, 2005; pp. 1–13. [Google Scholar]
- Kazimierczak, R.; Hallmann, E.; Kazimierczyk, M.; Rembiałkowska, E. Antioxidants content in chosen spice plants from organic and conventional cultivation. J. Res. Appl. Agric. Engin. 2010, 55, 164–170. [Google Scholar]
- Sartip, H.; Yadegari, H.; Fakheri, B. Organic agriculture and production of medicinal plants. Int. J. Food Allied. Sci. 2015, 4, 135–143. [Google Scholar]
- Hallmann, E.; Kazimierczak, R.; Marszałek, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional White Cabbage (Brassica oleracea L. var. capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczak, R.; Hallmann, E.; Sokołowska, O.; Rembiałkowska, E. Bioactive substances content in selected species of medical plants from organic and conventional production. J. Res. Appl. Agric. Engin. 2011, 56, 200–205. [Google Scholar]
- Kazimierczak, R.; Hallmann, E.; Rembiałkowska, E. Effects of organic and conventional production systems on the content of bioactive substances in four species of medicinal plants. Biol. Agric. Hort. 2014, 34, 1–11. [Google Scholar] [CrossRef]
- Søltoft, M.; Nielsen, J.; Holst Laursen, K.; Husted, S.; Halekoh, U.; Knuthsen, P. Effects of Organic and Conventional Growth Systems on the Content of Flavonoids in Onions and Phenolic Acids in Carrots and Potatoes. J. Agric. Food Chem. 2010, 58, 10323–10329. [Google Scholar] [CrossRef]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Munoz, P.; Rieradevall, J.; Muller, J.; Anton, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Mishra, R.P.N.; Singh, R.K.; Jaiswal, H.K.; Kumar, V.; Maurya, S. Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr. Microbiol. 2006, 52, 383–389. [Google Scholar] [CrossRef]
- Vaughan, D.; Ord, B. Influence of phenolic acids on morphological changes in roots of Pisum sativum. J. Sci. Food Agric. 1990, 52, 289–299. [Google Scholar] [CrossRef]
- Grace, S.C.; Logan, B.A. Energy dissipation and radical scavenging by the plant phenyl propanoid pathway. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 1499–1510. [Google Scholar] [CrossRef] [Green Version]
- Taie, H.A.A.; Salama, Z.A.R.; Radwan, S. Potential activity of basil plants as a source of antioxidants and anticancer agents as affected by organic and bio-organic fertilization. Not. Bot. Hort. Agrobot. Cluj. 2010, 38, 119–127. [Google Scholar]
- Yamasaki, H.; Sakihama, Y.; Lkehara, N. Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H202. Plant Physiol. 1997, 115, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesco, S.; Mimmo, T.; Tonon, G.; Tomasi, N.; Pinton, R.; Terzano, R.; Neumann, G.; Weisskopf, L.; Renella, G.; Landi, L.; et al. Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biol. Fertil. Soils 2012, 48, 123–149. [Google Scholar] [CrossRef]
- Capecka, E.; Mareczek, A.; Leja, M. Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem. 2005, 93, 223–226. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P. Analysis of phenolic compounds in Greek plants of Lamiaceae familyby HPLC. J. Appl. Res. Med. Aromat. Plants 2017, 6, 62–69. [Google Scholar]
- Heimler, D.; Isolani, L.; Vignolini, P.; Romani, A. Polyphenol content and antiradical activity of Cichorium intybus L. from biodynamic and conventional farming. Food Chem. 2009, 114, 765–770. [Google Scholar] [CrossRef]
- Skudra, I.; Ruza, A. Effect of Nitrogen and sulphur fertilization on chlorophyll content in winter wheat. Rural Sustain. Res. 2017, 37, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Branch, A. Effects of nitrogen fertilizer on chlorophyll content and other leaf indicate in three cultivars of maize (Zea mays L.). World Appl. Sci. J. 2011, 15, 1780–1785. [Google Scholar]
- Lupoae, M.; Furdui, B.; Dinică, R.; Coprean, D. Quantification of carotenoids and chlorophyll leaf pigments from autochthones dietary. J. Faculty Food Eng. 2010, 4, 42–47. [Google Scholar]
- Shen, J.; Jiang, C.; Yan, Y.; Liu, B.; Zu, C. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef]
- North, H.M.; De Almeida, A.; Boutin, J.P.; Frey, A.; To, A.; Botran, L.; Sotta, B.; Marion-Poll, A. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J. 2007, 50, 810–824. [Google Scholar] [CrossRef] [PubMed]
- Jahnsa, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta Bioenergy 2012, 1817, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Azzini, E.; Lazzé, M.C.; Raguzzini, A.; Pizzala, R.; Maiani, G.; Palomba, L.; Maiani, G. Antioxidants in Italian head lettuce (Lactuca sativa var. capitata L.) grown in organic and conventional systems under greenhouse conditions. J. Food Biochem. 2013, 38, 56–61. [Google Scholar] [CrossRef]
- Cruz, R.; Baptista, E.; Cunha, S.; Pereira, J.A.; Casal, S. Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds. Molecules 2012, 17, 1535–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bioactive Compounds/Experimental Combination | Organic Herbs | Conventional Herbs | Basil | Bears’ Garlic | Marjoram | Oregano | p-Value | |
---|---|---|---|---|---|---|---|---|
System | Species | |||||||
total polyphenols | 1769.9 ± 160.2 A | 1175.0 ± 78.4 B | 1001.3 ± 80.3 d | 1772.7 ± 18.6 b | 1109.4 ± 35.0 c | 2006.4 ± 296.5 a | <0.0001 | <0.0001 |
total phenolic acids | 735.5 ± 76.1 A | 631.1 ± 74.9 B | 358.2 ± 15.0 c | 1291.7 ± 22.8 a | 487.4 ± 11.1 c | 595.9 ± 46.3 b | 0.0003 | <0.0001 |
gallic acid | 663.4 ± 72.6 A | 543.0 ± 65.6 B | 329.8 ± 14.2 c | 1158.0 ± 28.4 a | 403.4 ± 12.6 c | 521.5 ± 50.8 b | 0.0001 | <0.0001 |
chlorogenic acid | 28.8 ± 8.6 B | 42.0 ± 13.6 A | 2.4 ± 0.5 c | 129.4 ± 8.1 a | 1.3 ± 0.0 c | 8.3 ± 0.2 b | <0.0001 | <0.0001 |
caffeic acid | 3.9 ± 0.5 B | 7.0 ± 0.7 A | 2.5 ± 0.1 c | 4.3 ± 0.5 b | 9.1 ± 0.2 a | 6.1 ± 1.2 b | <0.0001 | <0.0001 |
p-coumaric acid | 29.8 ± 4.6 A | 29.4 ± 4.7 A | 17.8 ± 1.0 b | N.D. | 55.4 ± 2.0 a | 45.2 ± 2.7 a | N.S. | <0.0001 |
ferulic acid | 13.0 ± 1.2 A | 12.8 ± 1.2 A | 5.6 ± 0.3 b | N.D. | 18.2 ± 0.7 a | 14.8 ± 0.9 a | N.S. | <0.0001 |
total flavonoids | 1034.4 ± 150.1 A | 543.9 ± 25.6 B | 643.1 ± 70.0 b | 481.0 ± 7.9 c | 621.9 ± 27.4 b | 1410.5 ± 250.7 a | <0.0001 | <0.0001 |
quercetin-3-O-rutinoside | 9.5 ± 0.2 B | 17.6 ± 0.8 A | 10.6 ± 0.5 b | N.D. | 15.9 ± 1.6 a | 14.1 ± 1.5 b | <0.0001 | <0.0001 |
kaempferol-3-O-glucoside | 59.5 ± 13.7 B | 321.0 ± 28.2 A | 6.4 ± 0.5 b | N.D. | 166.5 ± 44.6 a | 160.2 ± 23.0 a | <0.0001 | <0.0001 |
myricetin | 82.1 ± 6.9 A | 55.3 ± 0.9 B | N.D. | N.D. | 61.4 ± 15.8 b | 76.0 ± 8.0 a | <0.0001 | <0.0001 |
quercetin | 15.6 ± 2.1 B | 25.4 ± 2.4 A | 11.0 ± 2.6 c | 27.8 ± 1.4 a | 23.1 ± 4. b | 20.0 ± 2.4 c | 0.003 | 0.0045 |
quercetin-3-O-glucoside | 884.5 ± 137.2 A | 369.3 ± 13. B | 592.3 ± 70.5 b | 392.1 ± 11.1 c | 340.3 ± 6.0 c | 1182.9 ± 236.2 a | <0.0001 | <0.0001 |
apigenin | 17.5 ± 6.2 A | 13.1 ± 4.6 B | N.D. | 61.1 ± 2.6 | N.D. | N.D. | <0.0001 | <0.0001 |
kaempferol | 31.9 ± 1.9 A | 18.4 ± 2.3 B | 24.4 ± 0.3 b | N.D. | 14.7 ± 3.6 c | 36.2 ± 2.4 a | <0.0001 | <0.0001 |
total carotenoids | 28.4 ± 1.2 A | 27.8 ± 1.6 B | 23.5 ± 0.2 c | 39.4 ± 1.0 a | 24.0 ± 0.3 b | 25.5 ± 0.7 b | 0.0063 | <0.0001 |
lutein | 11.7 ± 0.7 A | 8.5 ± 0.1 B | 8.9 ± 0.2 b | 13.3 ± 1.3 a | 9.0 ± 0.2 b | 9.2 ± 0.5 b | <0.0001 | <0.0001 |
zeaxanthin | 1.8 ± 0.03 A | 1.6 ± 0.04 B | 1.7 ± 0.02 a | 1.8 ± 0.04 a | 1.8 ± 0.03 a | 1.4 ± 0.08 b | 0.001 | 0.0013 |
beta-carotene | 15.0 ± 0.5 B | 17.7 ± 1.5 A | 12.9 ± 0.1 c | 24.3 ± 1.9 a | 13.2 ± 0.1 b | 14.9 ± 0.3 b | 0.0022 | <0.0001 |
total chlorophylls | 120.0 ± 11.4 B | 184.1 ± 38.3 A | 70.6 ± 4.3 c | 354.9 ± 46.5 a | 106.1 ± 4.9 b | 76.5 ± 7.4 c | 0.0005 | <0.0001 |
chlorophyll b | 83.4 ± 8.5 B | 128.3 ± 26.5 A | 50.4 ± 3.9 c | 247.6 ± 30.9 a | 74.6 ± 3.4 b | 50.8 ± 4.8 c | 0.0005 | <0.0001 |
chlorophyll a | 36.6 ± 3.1 B | 55.7 ± 12.3 A | 20.2 ± 0.5 c | 107.3 ± 15.7 a | 31.5 ± 1.7 b | 25.7 ± 2.6 c | 0.0022 | <0.0001 |
Bioactive Compounds/Experimental Combination | ORG | CONV | Basil | Bears’ Garlic | Marjoram | Oregano | p-Value |
---|---|---|---|---|---|---|---|
System | |||||||
total polyphenols | 1821.2 ± 158.5 A | 1243.1 ± 91.5 b | 1008.8 ± 16.7 c | 1968.2 ± 12.1 a | 1145.0 ± 12.8 b | 2006.5 ± 18.9 a | <0.0001 |
total phenolic acids | 830.4 ± 88.9 A | 710.2 ± 87.4 b | 402.4 ± 18.4 d | 1482.7 ± 15.2 a | 533.3 ± 12.5 d | 662.9 ± 12.2 c | 0.0003 |
gallic acid | 760.9 ± 83.3 A | 622.9 ± 75.3 b | 378.3 ± 18.3 d | 1328.3 ± 151 a | 462.8 ± 12.8 c | 598.2 ± 11.9 b | 0.0001 |
chlorogenic acid | 33.3 ± 10.0 B | 64.6 ± 17.1 A | 4.6 ± 0.2 c | 150.1 ± 0.2 a | 1.4 ± 0.1 d | 9.6 ± 0.1 b | <0.0001 |
caffeic acid | 3.9 ± 0.5 B | 6.9 ± 0.7 A | 2.4 ± 0.1 d | 4.2 ± 0.1 c | 8.9 ± 0.1 a | 6.0 ± 0.1 b | <0.0001 |
p-coumaric acid | 24.4 ± 3.8 A | 24.1 ± 3.8 A | 14.7 ± 0.1 c | N.D. | 45.3 ± 0.3 a | 37.0 ± 1.0 b | N.S. |
ferulic acid | 10.6 ± 0.9 A | 10.4 ± 1.0 A | 4.6 ± 0.1 c | N.D. | 14.8 ± 0.1 a | 12.1 ± 0.3 b | N.S. |
total flavonoids | 990.8 ± 140.6 A | 532.9 ± 26.0 B | 606.4 ± 2.5 b | 485.5 ± 3.3 c | 611.7 ± 0.3 b | 1343.6 ± 6.7 a | <0.0001 |
quercetin-3-O-rutinoside | 7.6 ± 0.1 B | 14.1 ± 0.7 A | 8.5 ± 0.1 c | N.D. | 12.8 ± 0.2 a | 11.3 ± 0.1 b | <0.0001 |
kaempferol-3-O-glucoside | 62.4 ± 15.3 B | 336.5 ± 0.8 A | 6.7 ± 0.3 b | N.D. | 174.5 ± 0.1 a | 168.0 ± 4.3 a | <0.0001 |
myricetin | 61.6 ± 9.1 A | 39.3 ± 9.9 B | N.D. | 8.5 ± 0.2 b | 63.8 ± 0.7 a | 79.0 ± 0.1 a | <0.0001 |
quercetin | 18.1 ± 2.5 B | 29.5 ± 2.8 A | 12.7 ± 0.1 c | 32.4 ± 0.4 a | 26.8 ± 0.1 b | 23.2 ± 0.1 b | 0.003 |
quercetin-3-O-glucoside | 821.6 ± 127.5 A | 342.9 ± 13.0 B | 550.1 ± 2.6 b | 364.2 ± 3.0 c | 316.0 ± 0.5 c | 1098.8 ± 5.2 a | <0.0001 |
apigenin | 19.8 ± 7.0 A | 14.8 ± 5.2 B | N.D. | 69.2 ± 0.2 | N.D. | N.D. | <0.0001 |
kaempferol | 32.6 ± 3.8 A | 28.6 ± 1.7 B | 31.8 ± 0.3 b | 11.3 ± 0.1 c | 35.5 ± 0.1 b | 47.3 ± 0.3 a | <0.0001 |
total carotenoids | 29.9 ± 1.4 A | 29.0 ± 1.7 B | 24.3 ± 0.2 b | 42.1 ± 0.1 a | 24.8 ± 0.3 b | 26.6 ± 0.6 b | 0.0063 |
lutein | 12.9 ± 0.9 A | 9.2 ± 0.2 B | 9.5 ± 0.1 b | 14.9 ± 0.1 a | 9.8 ± 0.1 b | 9.9 ± 0.2 b | <0.0001 |
zeaxanthin | 1.8 ± 0.01 A | 1.6 ± 0.01 B | 1.7 ± 0.01 a | 1.7 ± 0.01 a | 1.8 ± 0.02 a | 1.4 ± 0.1 b | 0.0009 |
beta-carotene | 15.3 ± 0.5 B | 18.2 ± 1.7 A | 13.0 ± 0.1 c | 25.5 ± 0.1 a | 13.3 ± 0.1 c | 15.2 ± 0. 3b | 0.0019 |
total chlorophylls | 107.6 ± 10.0 B | 164.2 ± 34.4 A | 63.7 ± 1.8 c | 315.2 ± 4.4 a | 95.2 ± 2.5 b | 69.5 ± 5.5 c | 0.0005 |
chlorophyll b | 71.3 ± 7.1 B | 108.8 ± 22.2 A | 43.6 ± 1.6 c | 208.7 ± 1.1 a | 63.9 ± 2.2 b | 44.0 ± 3.6 c | 0.0005 |
chlorophyll a | 36.4 ± 3.1 B | 55.3 ± 12.2A | 20.1 ± 0.5 c | 106.5 ± 3.4 a | 31.3 ± 0.5 b | 25.5 ± 1.9 c | 0.0022 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallmann, E.; Sabała, P. Organic and Conventional Herbs Quality Reflected by Their Antioxidant Compounds Concentration. Appl. Sci. 2020, 10, 3468. https://doi.org/10.3390/app10103468
Hallmann E, Sabała P. Organic and Conventional Herbs Quality Reflected by Their Antioxidant Compounds Concentration. Applied Sciences. 2020; 10(10):3468. https://doi.org/10.3390/app10103468
Chicago/Turabian StyleHallmann, Ewelina, and Piotr Sabała. 2020. "Organic and Conventional Herbs Quality Reflected by Their Antioxidant Compounds Concentration" Applied Sciences 10, no. 10: 3468. https://doi.org/10.3390/app10103468
APA StyleHallmann, E., & Sabała, P. (2020). Organic and Conventional Herbs Quality Reflected by Their Antioxidant Compounds Concentration. Applied Sciences, 10(10), 3468. https://doi.org/10.3390/app10103468