Special Issue on ‘Novel Ideas for Infrared Thermography and Its Application to Integrated Approaches’
1. Introduction
2. Overview of the Accepted Papers
3. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Cadelano, G.; Bortolin, A.; Ferrarini, G.; Molinas, B.; Giantin, D.; Zonta, P.; Bison, P. Corrosion detection in pipelines using infrared thermography: Experiments and data processing methods. J. Nondestruct. Eval. 2016, 35, 49. [Google Scholar] [CrossRef]
- Gavrilov, D.; Maeva, E.; Maev, R.G. Thermographic inspection in the service of art science: Theory, methods and considerations. Insight 2014, 56, 131–136. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M. Impact damage in GFRP: New insights with infrared thermography. Compos. Part A Appl. Sci. 2010, 41, 1839–1847. [Google Scholar] [CrossRef]
- Kordatos, E.Z.; Exarchos, D.A.; Stavrakos, C.; Moropoulou, A.; Matikas, T.E. Infrared thermographic inspection of murals and characterization of degradation in historic monuments. Constr. Build. Mater. 2013, 48, 1261–1265. [Google Scholar] [CrossRef]
- Florez-Ospina, J.F.; Benitez-Restrepo, H.D. Toward automatic evaluation of defect detectability in infrared images of composites and honeycomb structures. Infrared Phys. Techn. 2015, 71, 99–112. [Google Scholar] [CrossRef]
- Vavilov, V.P.; Chulkov, A.O.; Derusova, D.A.; Pan, Y. Thermal NDT research at Tomsk Polytechnic University. QIRT J. 2016, 13, 128–143. [Google Scholar] [CrossRef]
- Peeters, J.; Ribbens, B.; Dirckx, J.J.J.; Steenackers, G. Determining directional emissivity: Numerical estimation and experimental validation by using infrared thermography. Infrared Phys. Techn. 2016, 77, 344–350. [Google Scholar] [CrossRef]
- Theodorakeas, P.; Avdelidis, N.P.; Cheilakou, E.; Koui, M. Quantitative analysis of plastered mosaics by means of active infrared thermography. Constr. Build. Mater. 2014, 73, 417–425. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L.; Hassler, U.; Fernandes, H.; Genest, M.; Robitaille, F.; Joncas, S.; Holub, W.; Sheng, Y.; Maldague, X. An experimental and analytical study of micro-laser line thermography on micro-sized flaws in stitched carbon fiber reinforced polymer composites. Compos. Sci. Technol. 2016, 126, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Sfarra, S.; Regi, M. Wavelet analysis applied to thermographic data for the detection of sub-superficial flaws in mosaics. Eur. Phys. J. Appl. Phys. 2016, 73, 31001. [Google Scholar] [CrossRef]
- Oswald-Tranta, B. Thermo-inductive crack detection. Nondestruct. Test. Eva. 2007, 22, 137–153. [Google Scholar] [CrossRef]
- Maldague, X.P.V. Theory and Practice of Infrared Technology for Nondestructive Testing, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 1–684. [Google Scholar]
- Sfarra, S.; Yao, Y.; Zhang, H.; Perilli, S.; Scozzafava, M.; Avdelidis, N.P.; Maldague, X.P.V. Precious walls built in indoor environments inspected numerically and experimentally within long-wave infrared (LWIR) and radio regions. J. Therm. Anal. Calorim. 2019, 137, 1083–1111. [Google Scholar] [CrossRef]
- Sfarra, S.; Perilli, S.; Paoletti, D.; Ambrosini, D. Ceramics and defects: Infrared thermography and numerical simulations—A wide-ranging view for quantitative analysis. J. Therm. Anal. Calorim. 2016, 123, 43–62. [Google Scholar] [CrossRef]
- Sfarra, S.; Cicone, A.; Yousefi, B.; Ibarra-Castanedo, C.; Perilli, S.; Maldague, X. Improving the detection of thermal bridges in buildings via on-site infrared thermography: The potentialities of innovative mathematical tools. Energy Build. 2019, 182, 159–171. [Google Scholar] [CrossRef]
- Ferrarini, G.; Fortuna, S.; Bortolin, A.; Cadelano, G.; Bison, P.; Peron, F.; Romagnoni, P. Numerical model and experimental analysis of the thermal behavior of electric radiant heating panels. Appl. Sci. 2018, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Gavrilov, G.; Maev, R., Gr. Extraction of independent structural images for principal component thermography. Appl. Sci. 2018, 8, 459. [Google Scholar] [CrossRef] [Green Version]
- Meola, C.; Boccardi, S.; Carlomagno, G.M. Infrared thermography for inline monitoring of glass/epoxy under impact and quasi-static bending. Appl. Sci. 2018, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Moropoulou, A.; Avdelidis, N.P.; Karoglou, M.; Delegou, E.T.; Alexakis, E.; Keramids, V. Multispectral applications of infrared thermography in the diagnosis and protection of built cultural heritage. Appl. Sci. 2018, 8, 284. [Google Scholar] [CrossRef]
- Ospina-Borras, J.E.; Benitez-Restrepo, H.D.; Florez-Ospina, J.F. Non-destructive infrared evaluation of thermo-physical parameters in bamboo specimens. Appl. Sci. 2017, 7, 1253. [Google Scholar] [CrossRef] [Green Version]
- Sannikov, D.V.; Kolevatov, A.S.; Vavilov, V.P.; Kuimova, M.V. Evaluating the quality of reinforced concrete electric railway poles by thermal nondestructive testing. Appl. Sci. 2018, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Steenackers, G.; Peeters, J.; Verspeek, S.; Ribbens, B. From thermal inspection to updating a numerical model of a race bicycle: Comparison with structural dynamics approach. Appl. Sci. 2018, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Theodorakeas, P.; Koui, M. Depth retrieval procedures in pulsed thermography: Remarks in time and frequency domain analyses. Appl. Sci. 2018, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sfarra, S.; Sarasini, F.; Santulli, C.; Fernandes, H.; Avdelidis, N.P.; Ibarra-Castanedo, C.; Maldague, X. Thermographic non-destructive evaluation for natural fiber-reinforced composite laminates. Appl. Sci. 2018, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Cristalli, C.; Grabowski, D. Multivariate analysis of transient state infrared images in production line quality control systems. Appl. Sci. 2018, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Galla, S. A thermographic measurement approach to assess supercapacitor electrical performances. Appl. Sci. 2017, 7, 1247. [Google Scholar] [CrossRef] [Green Version]
- Jones, J. Enhancing the accuracy of advanced high temperature mechanical testing through thermography. Appl. Sci. 2018, 8, 380. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Z.; Si, L.; Zhang, L.; Tan, C.; Xu, J. A non-reference image denoising method for infrared thermal image based on enhanced dual-tree complex wavelet optimized by fruit fly algorithm and bilateral filter. Appl. Sci. 2017, 7, 1190. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, F.; Orazi, N.; Paoloni, S.; Cicero, C.; Zammit, U. Pulsed thermography applied to the study of cultural heritage. Appl. Sci. 2017, 7, 1010. [Google Scholar] [CrossRef]
- Oswald-Tranta, B. Induction thermography for surface crack detection and depth determination. Appl. Sci. 2018, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Peeters, J.; Steenackers, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; Van der Snickt, G. IR reflectography and active thermography on artworks: The added value of the 1.5–3 μm band. Appl. Sci. 2018, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Zhang, T.; Wei, X.; Zhou, Z. An efficient numerical approach for field infrared smoke transmittance based on grayscale images. Appl. Sci. 2018, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Vantuch, T.; Fulneček, J.; Holuša, M.; Mišák, S.; Vaculik, J. An examination of thermal features’ relevance in the task of battery-fault detection. Appl. Sci. 2018, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Wan, M.; Ren, K.; Gu, G.; Zhang, X.; Qian, W.; Chen, Q.; Yu, S. Infrared small moving target detection via saliency histogram and geometrical invariability. Appl. Sci. 2017, 7, 569. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfarra, S.; Ambrosini, D. Special Issue on ‘Novel Ideas for Infrared Thermography and Its Application to Integrated Approaches’. Appl. Sci. 2020, 10, 56. https://doi.org/10.3390/app10010056
Sfarra S, Ambrosini D. Special Issue on ‘Novel Ideas for Infrared Thermography and Its Application to Integrated Approaches’. Applied Sciences. 2020; 10(1):56. https://doi.org/10.3390/app10010056
Chicago/Turabian StyleSfarra, Stefano, and Dario Ambrosini. 2020. "Special Issue on ‘Novel Ideas for Infrared Thermography and Its Application to Integrated Approaches’" Applied Sciences 10, no. 1: 56. https://doi.org/10.3390/app10010056
APA StyleSfarra, S., & Ambrosini, D. (2020). Special Issue on ‘Novel Ideas for Infrared Thermography and Its Application to Integrated Approaches’. Applied Sciences, 10(1), 56. https://doi.org/10.3390/app10010056