Measuring the Use of the Active and Assisted Living Prototype CARIMO for Home Care Service Users: Evaluation Framework and Results
Abstract
:1. Introduction
2. The AAL Prototype CARIMO for Home Care Service Users
2.1. Components of CARIMO
2.2. Fitness Program: Body-Related Features of CARIMO
2.3. Information and Entertainment: Mind-Related Features of CARIMO
3. Methods
3.1. Usage Measurement and Its Challenges
3.2. The Usage Data Measurement Framework for AAL Systems
3.2.1. Step 1: Usage Data Logging
3.2.2. Step 2: Usage Data Preparation
3.2.3. Step 3: Methods for Usage Data Analysis
4. Results: The Usage of CARIMO
4.1. The CARIMO Sample
4.2. Usage Data Logging for CARIMO
4.2.1. Approval of the Ethical Appropriateness of the Usage Data Collection
4.2.2. Evaluation Objectives and the Selection of Logging Levels
4.2.3. Determination of Logging Capacity and Bandwidth
4.2.4. Selection of the Logging Component(s) and Data Source(s)
4.2.5. Implementation of the Data Logging Procedures
4.3. Usage Data Preparation
4.3.1. Data Extraction and Enrichment
4.3.2. Data Pre-Processing
4.4. Methods for Usage Data Analysis
4.4.1. Definition of Usage Measures
4.4.2. Definition of CARIMO User Groups
- (i)
- frequent users: participants who used a CARIMO feature more often than a regular user.
- (ii)
- regular users: participants who used a CARIMO feature on a regular basis.
- (iii)
- infrequent users: participants who used a CARIMO feature less often than a regular user.
- (iv)
- non-users: participants who did not use a CARIMO feature at all.
Definition of Usage Groups for Body-Related Features of CARIMO
Definition of Usage Groups for Mind-Related Features of CARIMO
4.4.3. Definition of the Retention Rate
4.5. Results of the CARIMO Usage Data Analysis
4.5.1. Usage Frequencies of CARIMO
4.5.2. User Groups of CARIMO: Intensity of Use
4.5.3. Retention Rates of CARIMO
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AAL Joint Programme Brussels; The Central Managment Unit (CMU) AAL Joint Programme: Brussels, Belgium, 2013; p. 172.
- AAL Joint Programme Brussels; AAL Programme: Brussels, Belgium, 2016; p. 40.
- AAL Association AAL Programme. Available online: http://www.aal-europe.eu (accessed on 20 March 2019).
- Van Grootven, B.; Van Achterberg, T. The European Union’s Ambient and Assisted Living Joint Programme: An evaluation of its impact on population health and well-being. Health Inform. J. 2016, 25, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Agosti, M.; Crivellari, F.; Di Nunzio, G.M. Web log analysis: A review of a decade of studies about information acquisition, inspection and interpretation of user interaction. Data Min. Knowl. Discov. 2012, 24, 663–696. [Google Scholar] [CrossRef]
- Ray, P.P. IoT: An Architectural Framework for Monitoring Health of Elderly People. In Proceedings of the 2014 International Conference on Science Engineering and Management Research (ICSEMR), IEEE, Chennai, India, 27–29 November 2014; pp. 3–5. [Google Scholar]
- Mitzner, T.L.; Boron, J.B.; Fausset, C.B.; Adams, A.E.; Charness, N.; Czaja, S.J.; Dijkstra, K.; Fisk, A.D.; Rogers, W.A.; Sharit, J. Older adults talk technology: Technology usage and attitudes. Comput. Hum. Behav. 2010, 26, 1710–1721. [Google Scholar] [CrossRef] [Green Version]
- Burns, W.; Chen, L.; Nugent, C.; Donnelly, M.; Skillen, K.L.; Solheim, I. Mining usage data for adaptive personalisation of smartphone based help-on-demand services. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments—PETRA ’13, Rhodes, Greece, 29–31 May 2013; pp. 1–7. [Google Scholar]
- Rubin, V.A.; Mitsyuk, A.A.; Lomazova, I.A.; van der Aalst, W.M.P. Process mining can be applied to software too! In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement—ESEM ’14, Torino, Italy, 18–19 September 2014; pp. 1–8. [Google Scholar]
- Clarke, P.M.; Fiebig, D.G.; Gerdtham, U.-G. Optimal recall length in survey design. J. Health Econ. 2008, 27, 1275–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulhus, D.L. Socially desirable responding: The evolution of a construct. In The Role of Constructs in Psychological and Educational Measurement; Braun, H.I., Jackson, D.N., Wiley, D.E., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA; London, UK, 2002; pp. 49–69. [Google Scholar]
- Agosti, M.; Di Nunzio, G.M. Gathering and Mining Information from Web Log Files. In Digital Libraries: Research and Development. DELOS 2007; Thanos, C., Borri, F., Candela, L., Eds.; (Lecture Notes in Computer Science); Springer: Berlin/Heidelberg, Germany, 2007; Volume 4877, pp. 104–113. [Google Scholar]
- Lettner, F.; Holzmann, C. Automated and unsupervised user interaction logging as basis for usability evaluation of mobile applications. In Proceedings of the 10th International Conference on Advances in Mobile Computing & Multimedia—MoMM ’12, Bali, Indonesia, 3–5 December 2012; ACM Press: New York, NY, USA, 2012; p. 118. [Google Scholar]
- Jensen, K.L.; Larsen, L.B. Evaluating the usefulness of mobile services based on captured usage data from longitudinal field trials. In Proceedings of the 4th International Conference on Mobile Technology Applications, and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology—Mobility ’07, Singapore, 10–12 September 2007; ACM Press: New York, NY, USA, 2007; p. 675. [Google Scholar]
- Noldus, L.; Loke, B.; Kelia, M.; Spink, A. Automated Mobile User Experience Measurement: Combining Movement Tracking with App Usage Logging. In Proceedings of the Creating the Difference: Proceedings of the Chi Sparks 2014 Conference, The Hague, The Netherlands, 3 April 2014; pp. 31–34. [Google Scholar]
- Epstein, D.A.; Kang, J.H.; Pina, L.R.; Fogarty, J.; Munson, S.A. Reconsidering the device in the drawer. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp ’16, Heidelberg, Germany, 12–16 September 2016; pp. 829–840. [Google Scholar]
- Meyer, J.; Wasmann, M.; Heuten, W.; El Ali, A.; Boll, S.C.J. Identification and Classification of Usage Patterns in Long-Term Activity Tracking. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems—CHI ’17, Denver, CO, USA, 6–11 May 2017; pp. 667–678. [Google Scholar]
- Zhao, S.; Ramos, J.; Tao, J.; Jiang, Z.; Li, S.; Wu, Z.; Pan, G.; Dey, A.K. Discovering different kinds of smartphone users through their application usage behaviors. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp ’16, Heidelberg, Germany, 12–16 September 2016; pp. 498–509. [Google Scholar]
- Skillen, K.-L.; Nugent, C.D.; Donnelly, M.P.; Chen, L.L.; Burns, W.; Solheim, I. A Novel Approach for the Population and Adaptation of Ontology-Based User Profiles. In Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services. 8th International Conference, UCAmI 2014, Belfast, UK, 2–5 December 2014; Springer: Cham, Switzerland, 2014; pp. 280–287. ISBN 978-3-319-13101-6. [Google Scholar]
- Schneider, C.; Maringer, V.; Rieser, H.; Venek, V.; Krainer, D. Nutzungshäufigkeit von „meinZentrAAL. In Smartes Betreutes Wohnen Nutzung, Systemakzeptanz und Wirkungen von „meinZentrAAL“; Trukeschitz, B., Schneider, C., Ring-Dimitriou, S., Eds.; Books on Demand: Norderstedt, Deutschland, 2018; pp. 123–177. ISBN 978-3-744-88233-0. [Google Scholar]
- University of Innsbruck AAL Products—The Online Catalogue for Assistive and Smart Technologies. Available online: www.aal-products.com (accessed on 20 March 2019).
- Mollenkopf, H. The significance of out-of-home mobility in modern society. In Enhancing Mobility in Late Life; Mollenkopf, H., Fiorella, M., Ruoppila, I., Széman, Z., Tacken, M., Eds.; ISO Press: Amsterdam, The Netherlands, 2005; pp. 1–9. ISBN 978-1-58603-564-8. [Google Scholar]
- Paganini-Hill, A.; Greenia, D.E.; Perry, S.; Sajjadi, S.A.; Kawas, C.H.; Corrada, M.M. Lower likelihood of falling at age 90+ is associated with daily exercise a quarter of a century earlier: The 90+ Study. Age Ageing 2017, 46, 951–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geraedts, H.A.; Zijlstra, W.; Zhang, W.; Bulstra, S.; Stevens, M. Adherence to and effectiveness of an individually tailored home-based exercise program for frail older adults, driven by mobility monitoring: Design of a prospective cohort study. BMC Public Health 2014, 14, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, S.C.; Porter, M.M.; Menec, V.H. Mobility in older adults: A comprehensive framework. Gerontologist 2010, 50, 443–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trukeschitz, B.; Blüher, M. Measuring the Effectiveness of ‘CARIMO’, an ICT-Supported Fitness and Entertainment App for Home Care Recipients: Study Protocol and Survey Data Collection; Discussion Paper of the AAL-project CareInMovement (CiM) No. 2/2018 and Discussion Paper No. 2/2018 of the Research Institute for Economics of Aging; Vienna University of Economics and Business (WU): Vienna, Austria, 2018. [Google Scholar]
- Jungreitmayr, S.; Ring-Dimitriou, S. Training Concepts Report; Deliverable of the AAL-Project CareInMovement (CiM) No. 5: Salzburg, Austria, 2016. [Google Scholar]
- Doniger, G.M.; Beeri, M.S.; Bahar-Fuchs, A.; Gottlieb, A.; Tkachov, A.; Kenan, H.; Livny, A.; Bahat, Y.; Sharon, H.; Ben-Gal, O.; et al. Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer’s disease risk: A randomized controlled trial. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 118–129. [Google Scholar] [CrossRef]
- Arlati, S.; Colombo, V.; Spoladore, D.; Greci, L.; Pedroli, E.; Serino, S.; Cipresso, P.; Goulene, K.; Stramba-Badiale, M.; Riva, G.; et al. A Social Virtual Reality-Based Application for the Physical and Cognitive Training of the Elderly at Home. Sensors 2019, 19, 261. [Google Scholar] [CrossRef] [Green Version]
- Baldassini, D.; Colombo, V.; Spoladore, D.; Sacco, M.; Arlati, S. Customization of domestic environment and physical training supported by virtual reality and semantic technologies: A use-case. In Proceedings of the 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI), Modena, Italy, 11–13 September 2017; pp. 1–6. [Google Scholar]
- Konstantinidis, E.I.; Billis, A.; Hlauschek, W.; Panek, P.; Bamidis, P.D. Integration of cognitive and physical training in a smart home environment for the elderly people. Stud. Health Technol. Inform. 2010, 160, 58–62. [Google Scholar] [PubMed]
- ISO. ISO 9241-210:2010 Ergonomics of Human-System Interaction—Part 210: Human-Centred Design for Interactive Systems; ISO: Geneva, Switzerland, 2010; p. 32. [Google Scholar]
- Arch, A. Web Accessibility for Older Users: A Literature Review. Available online: https://www.w3.org/TR/wai-age-literature/ (accessed on 30 November 2019).
- Willner, V.; Rieser, H.; Venek, V.; Schneider, C. Selection and assessment of activity trackers for enthusiastic seniors. In Proceedings of the ICT4AWE 2017—Proceedings of the 3rd International Conference on Information and Communication Technologies for Ageing Well and e-Health; SCITEPRESS, Setúbal, Portugal; 2017; pp. 25–35. [Google Scholar]
- Schneider, C.; Maringer, V.; Rieser, H.; Henneberger, S. Methode für die Evaluierung des Nutzungsverhaltens von „meinZentrAAL“. In Smartes Betreutes Wohnen Nutzung, Systemakzeptanz und Wirkungen von „meinZentrAAL“; Trukeschitz, B., Schneider, C., Ring-Dimitriou, S., Eds.; Books on Demand: Norderstedt, Deutschland, 2018; pp. 59–62. ISBN 978-3-744-88233-0. [Google Scholar]
- Bell, M.; Chalmers, M.; Fontaine, L.; Higgs, M.; Morrison, A.; Rooksby, J.; Rost, M.; Sherwood, S. Experiences in Logging Everyday App Use. Digit. Econ. 2013, 13, 4–6. [Google Scholar]
- Andrei, O.; Calder, M.; Chalmers, M.; Morrison, A.; Rost, M. Probabilistic formal analysis of app usage to inform redesign. In Lecture Notes in Computer Scicience; (Including Subseries Lecture Notes in Artificial Intelligence Lecture Notes in Bioinformatics); Springer: Cham, Switzerland; Volume 9681, pp. 115–129.
- Cao, H.; Lin, M. Mining smartphone data for app usage prediction and recommendations: A survey. Pervasive Mob. Comput. 2017, 37, 1–22. [Google Scholar] [CrossRef]
- Wei, X.; Gurkok, C. ProfileDroid: Multi-layer Profiling of Android Applications Categories and Subject Descriptors. In Proceedings of the MobiCom’12 18th Annual International Conference on Mobile Computing and Networking, Istanbul, Turkey, 22–26 August 2012; pp. 137–148. [Google Scholar]
- Kumar, V.; Thakur, R.S. A Brief Investigation on Web Usage Mining Tools ( WUM ). Saudi J. Eng. Technol. 2017, 2, 1–11. [Google Scholar]
- Elzer, P.F. Der „Lebensdauerzyklus“ der Softwareentwicklung. In Management von Softwareprojekten; Vieweg + Teubner: Wiesbaden, Germany, 1994; pp. 33–82. [Google Scholar]
- Jansen, B.J. Search log analysis: What it is, what’s been done, how to do it. Libr. Inf. Sci. Res. 2006, 28, 407–432. [Google Scholar] [CrossRef]
- Zwijsen, S.A.; Niemeijer, A.R.; Hertogh, C.M.P.M. Ethics of using assistive technology in the care for community-dwelling elderly people: An overview of the literature. Aging Ment. Health 2011, 15, 419–427. [Google Scholar] [CrossRef]
- European Union Data Protection in the EU. Available online: https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en (accessed on 23 March 2019).
- Felnhofer, A.; Kothgassner, O.D.; Hauk, N.; Kastenhofer, E.; Kryspin-Exner, I. Ethik-Checkliste; University of Vienna: Wien, Austria, 2013. [Google Scholar]
- Weber, K. MEESTAR: Ein Modell zur ethischen Evaluierung sozio-technischer Arrangements in der Pflege- und Gesundheitsversorgung. In Technisierung des Alltags—Beitrag für ein Gutes Leben; Weber, K., Frommeld, D., Manzeschke, A., Fangerau, H., Eds.; Franz Steiner: Stuttgart, Germany, 2015; pp. 247–262. ISBN 978-3-515-11004-4. [Google Scholar]
- Manzeschke, A.; Weber, K.; Rother, E.; Fangerau, H. Ethical Questions in the Area of Age Appropriate Assisting Systems; VDI/VDE: Munich, Germany, 2015; ISBN 9783897501690. [Google Scholar]
- ISO/IEC. ISO/IEC 9834-8:2005 Information Technology—Open Systems Interconnection—Procedures for the Operation of OSI Registration Authorities: Generation and Registration of Universally Unique Identifiers (UUIDs) and Their Use as ASN.1 Object Identifier Compon; ISO: Geneva, Switzerland, 2005; p. 24. [Google Scholar]
- Craddock, G. The AT continuum in education: Novice to power user. Disabil. Rehabil. Assist. Technol. 2006, 1, 17–27. [Google Scholar] [CrossRef]
- Castellano, G.; Fanelli, A.M.; Torsello, M.A. Log Data Preparation for Mining Web Usage Patterns. In Proceedings of the IADIS International Conference Applied Computing, Salamanca, Spain, 18–20 February 2007; pp. 371–378. [Google Scholar]
- Jain, M.; Kumar, M.; Aggarwal, N. Web Usage Mining: An Analysis. J. Emerg. Technol. Web Intell. 2013, 5, 240–246. [Google Scholar] [CrossRef]
- Mans, R.; Reijers, H.; Wismeijer, D.; Van Genuchten, M. A process-oriented methodology for evaluating the impact of IT: A proposal and an application in healthcare. Inf. Syst. 2013, 38, 1097–1115. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.; Dos, S.; Meincheim, A.; Faria Junior, E.R.; Dallagassa, M.R.; Sato, D.M.V.; Carvalho, D.R.; Santos, E.A.P.; Scalabrin, E.E. Process mining techniques and applications—A systematic mapping study. Expert Syst. Appl. 2019, 133, 260–295. [Google Scholar] [CrossRef]
- Adhikari, R.; Agrawal, R.K. An Introductory Study on Time Series Modeling and Forecasting; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2013; ISBN 978-3-659-33508-2. [Google Scholar]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Komsky, S.H. A Profile of Users of Electronic Mail in a University. Manag. Commun. Q. 1991, 4, 310–340. [Google Scholar] [CrossRef]
- Egan, W. What Is a Good Retention Rate for Online Software. Available online: http://www.willegan.com/what-is-a-good-retention-rate/ (accessed on 23 March 2019).
- Tong, H.L.; Laranjo, L. The use of social features in mobile health interventions to promote physical activity: A systematic review. NPJ Digit. Med. 2018, 1, 43. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Matomo Glossary of Analytics Terms—Web & Mobile Analytics. Available online: https://glossary.matomo.org/ (accessed on 9 March 2019).
- Wang, R.; Blackburn, G.; Desai, M.; Phelan, D.; Gillinov, L.; Houghtaling, P.; Gillinov, M. Accuracy of Wrist-Worn Heart Rate Monitors. JAMA Cardiol. 2017, 2, 104–106. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO Press: Geneva, Switzerland, 2010; ISBN 978-92-4-159-997-9. [Google Scholar]
- Pate, R.R. Physical Activity and Public Health. JAMA 1995, 273, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Trukeschitz, B.; Blüher, M. Usability of “CARIMO” after Initial Training and Over Time. The Home Care Service Users’ Perspective in Austria and Italy; Vienna University of Economics and Business: Vienna, Austria, 2018. [Google Scholar]
- Perro, J. Mobile Apps: What’s a Good Retention Rate? Available online: http://info.localytics.com/blog/mobile-apps-whats-a-good-retention-rate (accessed on 11 March 2019).
- Garmendia, M.L.; Dangour, A.D.; Albala, C.; Eguiguren, P.; Allen, E.; Uauy, R. Adherence to a physical activity intervention among older adults in a post-transitional middle income country: A quantitative and qualitative analysis. J. Nutr. Health Aging 2013, 17, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Macera, C.A.; Ham, S.A.; Yore, M.M.; Jones, D.A.; Ainsworth, B.E.; Kimsey, C.D.; Kohl, H.W. Prevalence of physical activity in the United States: Behavioral Risk Factor Surveillance System, 2001. Prev. Chronic Dis. 2005, 2, A17. [Google Scholar]
- Coroiu, A.D.C.A.; Coroiu, A. Interchangeability of Kinect and Orbbec Sensors for Gesture Recognition. In Proceedings of the 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 6–8 September 2018; pp. 309–315. [Google Scholar]
Test Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Number of participants | 104 | 97 | 94 | 89 | 89 | 85 | 85 | 85 |
Gender | ||||||||
Female | 77 | 71 | 69 | 66 | 66 | 63 | 63 | 63 |
Male | 27 | 26 | 25 | 23 | 23 | 22 | 22 | 22 |
Age group | ||||||||
<60 years | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
60–69 years | 29 | 28 | 27 | 27 | 27 | 26 | 26 | 26 |
70–79 years | 51 | 47 | 45 | 41 | 41 | 39 | 39 | 39 |
>79 years | 22 | 20 | 20 | 19 | 19 | 18 | 18 | 18 |
Country | ||||||||
Austria | 64 | 60 | 57 | 55 | 55 | 54 | 54 | 54 |
Italy | 40 | 37 | 37 | 34 | 34 | 31 | 31 | 31 |
Dependency level | ||||||||
Can do some (I) ADLs with help only (help needed) | 28 | 25 | 24 | 23 | 23 | 21 | 21 | 21 |
Can do some (I) ADLs with difficulty but manage on their own (difficulty) | 49 | 45 | 44 | 40 | 40 | 39 | 39 | 39 |
Can do all (I) ADLs without help (independent) | 24 | 24 | 23 | 23 | 23 | 23 | 23 | 23 |
Missing | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 |
User Group | Fitness Exercises (Per Month) | Activities (Per Month) | Body-Related Functions (Per Month) |
---|---|---|---|
Frequent user | 8 times or more | 25 times or more |
|
Regular user | Between 4 and 7 times | Between 9 and 24 times |
|
Infrequent user | Between 1 and 3 times | Between 1 and 8 times |
|
Non-user | Never | Never |
|
Usage Groups | Newspapers (Per Month) | Internet (Per Month) | Games (Per Month) | Internet & Games (I & G) (Per Month) | Mind-Related Functions (Newspapers, Internet & Games) (Per Month) |
---|---|---|---|---|---|
Frequent user | 20 times or more | 16 times or more | 15 times or more |
|
|
Regular user | Between 10 and 19 times | Between 7 and 15 times | Between 8 and 14 times |
|
|
Infrequent user | Between 1 and 9 times | Between 1 and 6 times | Between 1 and 7 times |
|
|
Non-user | Never | Never | Never |
|
|
Test Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Total users | 104 | 97 | 94 | 89 | 89 | 85 | 85 | 85 |
Users per country | ||||||||
Austria | 64 | 60 | 57 | 55 | 55 | 54 | 54 | 54 |
Italy | 40 | 37 | 37 | 34 | 34 | 31 | 31 | 31 |
Median usage of CARIMO (per user/month) | ||||||||
CARIMO app: median visits | 32 | 36 | 27 | 30 | 29 | 27 | 33 | 29 |
Activity tacker; median days | 14 | 18 | 15 | 20 | 17 | 15 | 3 | 0 |
Median usage of CARIMO in Austria (per user/month) | ||||||||
CARIMO app median visits | 44 | 45 | 38 | 38 | 39 | 30 | 33 | 35 |
Activity tracker median days | 17 | 20 | 20 | 28 | 22 | 20 | 16.5 | 0 |
Median usage of CARIMO in Italy (per user/month) | ||||||||
CARIMO app median visits | 18 | 18 | 18 | 23 | 26 | 32 | 17 | 32 |
Activity tracker median days | 6 | 10 | 5 | 11 | 9 | 3 | 0 | 0.5 |
Body-Related Features (Aggregation of ‘Fitness Exercises’ and ‘Activities’) | CARIMO Features | Mind-Realted Features (Aggregation of ‘Newspapers’ and ‘Internet and Games’) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Test month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Total | ||||||||||||||||
44.2% (46) | 44.3% (43) | 45.7% (43) | 51.7% (46) | 41.6% (37) | 37.6% (32) | 40.0% (34) | 32.9% (28) | Frequent users | 18.3% (19) | 16.5% (16) | 11.7% (11) | 18.0% (16) | 14.6% (13) | 16.5% (14) | 18.8% (16) | 15.3% (13) |
22.1% (23) | 25.8% (25) | 24.5% (23) | 23.6% (21) | 24.7% (22) | 29.4% (25) | 30.6% (26) | 29.4% (25) | Regular users | 36.5% (38) | 39.2% (38) | 40.4% (38) | 36.0% (32) | 40.4% (36) | 49.4% (42) | 44.7% (38) | 37.6% (32) |
22.1% (23) | 8.2% (8) | 17.0% (16) | 10.1% (9) | 18.0% (16) | 15.3% (13) | 11.8% (10) | 10.6% (9) | Infrequent users | 37.5% (39) | 32.0% (31) | 36.2% (34) | 32.6% (29) | 30.3% (27) | 24.7% (21) | 29.4% (25) | 29.4% (25) |
11.5% (12) | 21.6% (21) | 12.8% (12) | 14.6% (13) | 15.7% (14) | 17.6% (15) | 17.6% (15) | 27.1% (23) | Non-users | 7.7% (8) | 12.4% (12) | 11.7% (11) | 13.5% (12) | 14.6% (13) | 9.4% (8) | 7.1 (6) | 17.6% (15) |
88.5% | 78.4% | 87.2% | 85.4% | 84.3% | 82.4% | 82.4% | 72.9% | RRv1 | 92.3% | 87.6% | 88.3% | 86.5% | 85.4% | 90.6% | 92.9% | 82.4% |
66.3% | 70.1% | 70.2% | 75.3% | 66.3% | 67.1% | 70.6% | 62.4% | RRv2 | 54.8% | 55.7% | 52.1% | 53.9% | 55.1% | 65.9% | 63.5% | 52.9% |
Austria | ||||||||||||||||
54.7% (35) | 55.0% (33) | 64.9% (37) | 65.5% (36) | 52.7% (29) | 50.0% (27) | 48.1% (26) | 40.7% (22) | Frequent users | 25.0% (16) | 21.7% (13) | 12.3% (7) | 20.0% (11) | 14.5% (8) | 18.5% (10) | 16.7% (9) | 14.8% (8) |
26.6% (17) | 28.3% (17) | 17.5% (10) | 20.0% (11) | 21.8% (12) | 25.9% (14) | 37.0% (20) | 33.3% (18) | Regular users | 40.6% (26) | 45.0% (27) | 49.1% (28) | 36.4% (20) | 40.0% (22) | 48.1% (26) | 46.3% (25) | 37.0% (20) |
14.1% (9) | 5.0% (3) | 7.0% (4) | 5.5% (3) | 14.5% (8) | 11.1% (6) | 5.6% (3) | 5.6% (3) | Infrequent users | 28.1% (18) | 25.0% (15) | 26.3% (15) | 27.3% (15) | 25.5% (14) | 24.1% (13) | 31.5% (17) | 29.6% (16) |
4.7% (3) | 11.7% (7) | 10.5% (6) | 9.1% (5) | 10.9% (6) | 13.0% (7) | 9.3% (5) | 20.4% (11) | Non-users | 6.3% (4) | 8.3% (5) | 12.3% (7) | 16.4% (9) | 20.0% (11) | 9.3% (5) | 5.6% (3) | 18.5% (10) |
95.3% | 88.3% | 89.5% | 90.9% | 89.1% | 87.0% | 90.7% | 79.6% | RRv1 | 93.8% | 91.7% | 87.7% | 83.6% | 80.0% | 90.7% | 94.4% | 81.5% |
81.3% | 83.3% | 82.5% | 85.5% | 74.5% | 75.9% | 85.2% | 74.1% | RRv2 | 65.6% | 66.7% | 61.4% | 56.4% | 54.5% | 66.7% | 63.0% | 51.9% |
Italy | ||||||||||||||||
27.5% (11) | 27.0% (10) | 16.2% (6) | 29.4% (10) | 23.5% (8) | 16.1% (5) | 25.8% (8) | 19.4% (6) | Frequent users | 7.5% (3) | 8.1% (3) | 10.8% (4) | 14.7% (5) | 14.7% (5) | 12.9% (4) | 22.6% (7) | 16.1% (5) |
15.0% (6) | 21.6% (8) | 35.1% (13) | 29.4% (10) | 29.4% (10) | 35.5% (11) | 19.4% (6) | 22.6% (7) | Regular users | 30.0% (12) | 29.7% (11) | 27.0% (10) | 35.3% (12) | 41.2% (14) | 51.6% (16) | 41.9% (13) | 38.7% (12) |
35.0% (14) | 13.5% (5) | 32.4% (12) | 17.6% (6) | 23.5% (8) | 22.6% (7) | 22.6% (7) | 19.4% (6) | Infrequent users | 52.5% (21) | 43.2% (16) | 51.4% (19) | 41.2% (14) | 38.2% (13) | 25.8% (8) | 25.8% (8) | 29.0% (9) |
22.5% (9) | 37.8% (14) | 16.2% (6) | 23.5% (8) | 23.5% (8) | 25.8% (8) | 32.3% (10) | 38.7% (12) | Non-users | 10.0% (4) | 18.9% (7) | 10.8% (4) | 8.8% (3) | 5.9% (2) | 9.7% (3) | 9.7% (3) | 16.1% (5) |
77.5% | 62.2% | 83.8% | 76.5% | 76.5% | 74.2% | 67.7% | 61.3% | RRv1 | 90.0% | 81.1% | 89.2% | 91.2% | 94.1% | 90.3% | 90.3% | 83.9% |
42.5% | 48.6% | 51.4% | 58.8% | 52.9% | 51.6% | 45.2% | 41.9% | RRv2 | 37.5% | 37.8% | 37.8% | 50.0% | 55.9% | 64.5% | 64.5% | 54.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, C.; Trukeschitz, B.; Rieser, H. Measuring the Use of the Active and Assisted Living Prototype CARIMO for Home Care Service Users: Evaluation Framework and Results. Appl. Sci. 2020, 10, 38. https://doi.org/10.3390/app10010038
Schneider C, Trukeschitz B, Rieser H. Measuring the Use of the Active and Assisted Living Prototype CARIMO for Home Care Service Users: Evaluation Framework and Results. Applied Sciences. 2020; 10(1):38. https://doi.org/10.3390/app10010038
Chicago/Turabian StyleSchneider, Cornelia, Birgit Trukeschitz, and Harald Rieser. 2020. "Measuring the Use of the Active and Assisted Living Prototype CARIMO for Home Care Service Users: Evaluation Framework and Results" Applied Sciences 10, no. 1: 38. https://doi.org/10.3390/app10010038
APA StyleSchneider, C., Trukeschitz, B., & Rieser, H. (2020). Measuring the Use of the Active and Assisted Living Prototype CARIMO for Home Care Service Users: Evaluation Framework and Results. Applied Sciences, 10(1), 38. https://doi.org/10.3390/app10010038