Minimizing Chromium Leaching from Low-Alloy Electric Arc Furnace (EAF) Slag by Adjusting the Basicity and Cooling Rate to Control Brownmillerite Formation
Abstract
1. Introduction
2. Methods and Material
2.1. Thermodynamic Calculations
2.2. Experimental Overview
2.3. EN 12457-2 Leaching Test
2.4. Mineralogical Characterization
2.5. Laboratory-Scale Experiments
2.5.1. Controlling Basicity
2.5.2. Controlling Cooling
3. Results and Discussion
3.1. Controlling Basicity
3.2. Controlling Cooling
4. Full-Scale Production Verifications
4.1. Controlling Basicity in Full-Scale Experiments
4.2. Controlling Cooling in Full-Scale Experiments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Produktion Jernkontoret. Available online: http://www.jernkontoret.se/sv/stalindustrin/branschfakta-och-statistik/produktion/ (accessed on 31 January 2018).
- Pålsson, K.; Stemne, J.; Johansson, L.; Blixt, E. Stålindustrin Gör Mer än Stål—Handbok för Restprodukter; Jernkontoret: Stockholm, Sweden, 2012. [Google Scholar]
- Motz, H.; Geiseler, J. Products of steel slags an opportunity to save natural resources. Waste Manag. 2001, 21, 285–293. [Google Scholar] [CrossRef]
- Juckes, L.M. The volume stability of modern steelmaking slags. Trans. Inst. Min. Metall. Sect. C Miner. Process. Extr. Metall. 2003, 112, 177–197. [Google Scholar] [CrossRef]
- Durinck, D.; Arnout, S.; Mertens, G.; Boydens, E.; Jones, P.T.; Elsen, J.; Blanpain, B.; Wollants, P. Borate distribution in stabilized stainless-steel slag. J. Am. Ceram. Soc. 2008, 91, 548–554. [Google Scholar] [CrossRef]
- Mudersbach, D.; Kühn, M.; Geisler, J.; Koch, K. Chrome immobilisation in EAF-slags from high-alloy steelmaking: tests at FEhS institute and development of an operational slag treatment process. In Proceedings of the 1st International Slag Valorisation Symposium, Leuven, Belgium, 6–7 April 2009. [Google Scholar]
- Pillay, K.; Von Blottnitz, H.; Petersen, J. Ageing of chromium(III)-bearing slag and its relation to the atmospheric oxidation of solid chromium(III)-oxide in the presence of calcium oxide. Chemosphere 2003, 52, 1771–1779. [Google Scholar] [CrossRef]
- Fakta och Nyckeltal. 2019. Available online: https://www.jernkontoret.se/sv/stalindustrin/branschfakta-och-statistik/fakta-och-nyckeltal/ (accessed on 8 October 2019).
- Pålsson, K.; Stemne, J.; Ruist, G.; Blixt, E. Stålindustrin Gör Mer än Stål—Handbok för Restprodukter 2018; Jernkontoret: Stockholm, Sweden, 2018. [Google Scholar]
- Jansson, Å. Minimal Återverkan på Ljusbågsugnsslagg på Miljön; Bergsskolan i Filipstad: Filipstad, Sweden, 2000. [Google Scholar]
- Nilsson, N. Inverkan av MgO på Ljusbågsugnsslaggens Lakningsegenskaper; Luleå University of Technology: Luleå, Sweden, 2002. [Google Scholar]
- Lindström, B. Inverkan av Processparametrar på Ljusbågsugsslaggens Kromlakningsegenskaper; Luleå University of Technology: Luleå, Sweden, 2004. [Google Scholar]
- Lindström, B. Arbetet med att Förbättra Ljusbågugnsslaggens Kromlakningsegenskaper vid Ovakos Anläggning i Hofors; Ovako Steel: Hofors, Sweden, 2006. [Google Scholar]
- Fällman, A. Leaching of chromium and barium from steel slag in laboratory and field tests—A solubility controlled process? Waste Manag. 2000, 20, 149–154. [Google Scholar] [CrossRef]
- Aldrian, A.; Raith, J.G.; Höllen, D.; Pomberger, R. Influence of chromium containing spinels in an electric arc furnace slag on the leaching behaviour. J. Solid Waste Technol. Manag. 2015, 41, 357–365. [Google Scholar] [CrossRef]
- Strandkvist, I.; Björkman, B.; Engström, F. Synthesis and dissolution of slag minerals—A study of β-dicalcium silicate, pseudowollastonite and monticellite. Can. Metall. Q. 2015, 54, 446–454. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-Diaz, E. The effect of microstructure on the leaching behaviour of electric arc furnace (EAF) carbon steel slag. Process Saf. Environ. Prot. 2016, 102, 810–821. [Google Scholar] [CrossRef]
- Strandkvist, I. Inverkan av Järnoxid på Ljusbågsugnsslaggens Kromlakningsegenskaper; Luleå University of Technology: Luleå, Sweden, 2010. [Google Scholar]
- Roininen, J.; Vaara, N.; Ylimaunu, J. Quality Control for Stainless Steel Slag Products. In Proceedings of the 4th European Slag Conference, Oulu, Finland, 20–21 June 2005; pp. 199–210. [Google Scholar]
- Geiseler, J.; Schlösser, R.; Scheel, R.; Koch, K.; Janke, D. Untersuchungen zum Hydratationsverhalten von synthetischen Magnesiowüstiten. Steel Res. 1987, 58, 210–214. [Google Scholar] [CrossRef]
- Strandkvist, I.; Sandström, Å.; Engström, F. Effect of FeO/MgO Ratio on Dissolution and Leaching of Magnesiowüstite. Steel Res. Int. 2017, 88, 1600322. [Google Scholar] [CrossRef]
- Qian, G.R.; Sun, D.D.; Tay, J.H.; Lai, Z.Y. Hydrothermal reaction and autoclave stability of Mg bearing RO phase in steel slag. Br. Ceram. Trans. 2002, 101, 159–164. [Google Scholar] [CrossRef]
- Schlösser, R.; Steffes, B. Commission of the European Communities. In Untersuchungen an Stahlwerksschlacken, Insbesondere im Hinblick auf Ihre Verwendung im Strassenbau; Kommission der Europäischen Gemeinschaften: Luxemburg, 1985. [Google Scholar]
- Mombelli, D.; Mapelli, C.; Di Cecca, C.; Barella, S.; Gruttadauria, A. Electric arc furnace slag: Study on leaching mechanisms and stabilization treatments. [Scorie da forno elettrico ad arco: Studio sui meccanismi di rilascio e trattamenti di stabilizzazione]. Metall. Ital. 2016, 108, 5–17. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Ltd.: London, UK, 1997. [Google Scholar]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melancon, J.; et al. FactSage thermochemical software and databases, 2010–2016. Calphad Comput. Coupling Phase Diagr. Thermochem. 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Gruttadauria, A.; Le Saout, G.; Garcia-Diaz, E. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability. J. Hazard. Mater. 2014, 279, 586–596. [Google Scholar] [CrossRef]
- Kilau, H.W.; Shah, I.D. Preventing Chromium Leaching from Waste Slag Exposed to Simulated Acid Precipitation: A Laboratory Study; US Department of the Interior, Bureau of Mines: Washington, DC, USA, 1984.
- Neuhold, S.; Van Zomeren, A.; Dijkstra, J.J.; Van der Sloot, H.A.; Drissen, P.; Algermissen, D.; Mudersbach, D.; Schüler, S.; Griessacher, T.; Raith, J.G.; et al. Investigation of possible leaching control mechanisms for chromium and vanadium in electric arc furnace (EAF) slags using combined experimental and modeling approaches. Minerals 2019, 9, 525. [Google Scholar] [CrossRef]
- Engström, F.; Adolfsson, D.; Samuelsson, C.; Sandström, Å.; Björkman, B. A study of the solubility of pure slag minerals. Miner. Eng. 2013, 41, 46–52. [Google Scholar] [CrossRef]
- Strandkvist, I.; Björkman, B.; Engström, F.; Pålsson, K. Chromium leaching from low-alloy EAF slag—Influence of ageing and FeO content. In Proceedings of the 14th ISIJ-VDEh Seminar, the 8th Japan-Nordic Countries Joint Symposium on Science and Technology of Process Metallurgy, ISIJ-VDeh-Jernkontoret Joint Symposium, Osaka, Japan, 15–16 April 2013; p. 57. [Google Scholar]
- Tossavainen, M.; Engstrom, F.; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. Characteristics of steel slag under different cooling conditions. Waste Manag. 2007, 27, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R., II. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
Basicity Experiments | Cooling Experiments | |
---|---|---|
Lab scale | Basicity 2.7 remelted | Hold temp. 700 °C |
Basicity 2.3 by SiO2-addition | Alternating temp. 800–1000 °C | |
Basicity 2.0 by SiO2-addition | Set cooling rate, 4 °C/min | |
Basicity 1.5 by SiO2-addition | Fast cooling rate, 25 °C within 2 h | |
Full scale | Basicity 2.2 by SiO2-sand addition | Air-cooled |
Water-cooled |
CaO | MgO | SiO2 | Al2O3 | FeO | Fe2O3 | MnO | Cr2O3 |
---|---|---|---|---|---|---|---|
31.0 | 9.12 | 11.4 | 6.4 | 14.5 | 15.8 | 5.5 | 3.1 |
Basicity | CaO | MgO | SiO2 | Al2O3 | MnO | Cr2O3 | FeO | Fe2O3 | |
---|---|---|---|---|---|---|---|---|---|
Slag 1 | 2.1 | 28.5 | 8.14 | 13.3 | 5.62 | 7.05 | 4.05 | 20.6 | 8.10 |
Slag 2 | 2.8 | 31.0 | 9.43 | 11.1 | 8.89 | 5.96 | 2.92 | 18.2 | 8.21 |
CaO | MgO | SiO2 | Al2O3 | FeO | MnO | Cr2O3 | |
---|---|---|---|---|---|---|---|
Basicity 2.3 | 31.5 | 10.5 | 13.5 | 6.4 | 26.2 | 5.1 | 2.8 |
Basicity 2.0 | 30.6 | 11.0 | 15.3 | 6.4 | 25.2 | 5.1 | 2.7 |
Basicity 1.5 | 28.3 | 11.7 | 18.8 | 5.8 | 24.1 | 4.6 | 2.4 |
Sample | Larnite | Magnesio- | Brownmillerite | Spinel | Merwinite |
---|---|---|---|---|---|
Ca2SiO4 | Wüstite MeO | Ca2(Al,Fe)2O5 | AB2O4 | Ca3MgSi2O8 | |
Reference | XRD, SEM | XRD, SEM | XRD, SEM | XRD, SEM | |
Remelted | XRD, SEM | XRD, SEM | XRD, SEM | SEM | |
Basicity 2.3 | XRD, SEM | XRD, SEM | XRD, SEM | SEM | |
Basicity 2.0 | XRD | XRD | XRD | ||
Basicity 1.5 | XRD, SEM | XRD, SEM | XRD, SEM |
Sample | Basicity | Larnite | Magneiso- | Brownmillerite | Spinel |
---|---|---|---|---|---|
Ca2SiO4 | Wûstite MeO | Ca2(Al,Fe)2O5 | AB2O4 | ||
Reference | 2.1 | XRD | XRD | XRD | |
2.8 | XRD | XRD | XRD | XRD | |
Hold. Temp. | 2.1 | XRD, SEM | XRD, SEM | XRD, SEM | |
2.8 | XRD, SEM | XRD, SEM | XRD, SEM | XRD, SEM | |
Alter. Temp. | 2.1 | XRD, SEM | XRD, SEM | XRD, SEM | |
2.8 | XRD, SEM | XRD, SEM | XRD, SEM | XRD, SEM | |
Set Cool. | 2.8 | XRD, SEM | XRD, SEM | XRD, SEM | XRD, SEM |
Fast Cool. | 2.8 | XRD, SEM | XRD, SEM | XRD, SEM | SEM |
CaO | MgO | SiO2 | Al2O3 | FeO | Na2O | K2O | |
---|---|---|---|---|---|---|---|
Sand 1 | 1.6 | 1.4 | 71.2 | 13.9 | 3.46 | 2.6 | 4.1 |
Sand 2 | 1.76 | 0.87 | 73.5 | 12.7 | 2.33 | 3.05 | 3.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strandkvist, I.; Pålsson, K.; Andersson, A.; Olofsson, J.; Lennartsson, A.; Samuelsson, C.; Engström, F. Minimizing Chromium Leaching from Low-Alloy Electric Arc Furnace (EAF) Slag by Adjusting the Basicity and Cooling Rate to Control Brownmillerite Formation. Appl. Sci. 2020, 10, 35. https://doi.org/10.3390/app10010035
Strandkvist I, Pålsson K, Andersson A, Olofsson J, Lennartsson A, Samuelsson C, Engström F. Minimizing Chromium Leaching from Low-Alloy Electric Arc Furnace (EAF) Slag by Adjusting the Basicity and Cooling Rate to Control Brownmillerite Formation. Applied Sciences. 2020; 10(1):35. https://doi.org/10.3390/app10010035
Chicago/Turabian StyleStrandkvist, Ida, Kjell Pålsson, Anton Andersson, Jenny Olofsson, Andreas Lennartsson, Caisa Samuelsson, and Fredrik Engström. 2020. "Minimizing Chromium Leaching from Low-Alloy Electric Arc Furnace (EAF) Slag by Adjusting the Basicity and Cooling Rate to Control Brownmillerite Formation" Applied Sciences 10, no. 1: 35. https://doi.org/10.3390/app10010035
APA StyleStrandkvist, I., Pålsson, K., Andersson, A., Olofsson, J., Lennartsson, A., Samuelsson, C., & Engström, F. (2020). Minimizing Chromium Leaching from Low-Alloy Electric Arc Furnace (EAF) Slag by Adjusting the Basicity and Cooling Rate to Control Brownmillerite Formation. Applied Sciences, 10(1), 35. https://doi.org/10.3390/app10010035