An Ensemble Learning and RUL Prediction Method Based on Bearings Degradation Indicator Construction
Abstract
:1. Introduction
- (1)
- To reveal the state of bearing degradation more fully, we integrated the selected high contribution rate and sensitive features to form a more representative and robust feature set, defined as the bearing degradation indicator set.
- (2)
- To ensure the robustness of the constructed set of bearing degradation indicators, a new framework for three-stage feature selection is proposed for bearing RUL prediction, which more comprehensively considers the correlation between features and bearing degradation state.
- (3)
- The AdaBoost algorithm is proposed to enhance the prediction ability, the prediction accuracy, and the generalization ability of the LSTM prediction model.
2. Basic Theory and Algorithm
2.1. LSTM
2.2. Feature Selection
2.2.1. FCBF Feature Selection Method and Markov Blanket
2.2.2. Maximum Information Coefficient (MIC)
3. Methodology
3.1. Proposed Degradation Indicator Set
Algorithm 1 FCBF-AMB feature selection method. |
Input: Original feature set , real RUL values R, threshold value . |
Output: Initial bearing degradation indicator subset . |
|
Algorithm 2 MIC feature selection method. |
Input: Original data set D, original feature set , real RUL value R. |
Output: Initial bearing degradation indicator subset , subset . |
|
3.2. LSTM-AdaBoost Ensemble Learning and Prediction Model
Algorithm 3 LSTM-Adaboost Algorithm. |
Input: Training data set: , LSTM weak predictor. |
Output: Strong predictor |
|
4. Experiment and Analysis
4.1. Data Description
4.2. Experiment
4.2.1. Data Preprocessing and Feature Extraction
Algorithm 4 Data preprocessing |
Input: Data sample , n is the number of samples. |
Output: Original feature set F after data preprocessing. |
|
4.2.2. Construction of Bearing Degradation Indicator Set
4.2.3. Train Prediction Model
4.3. Results and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boskoski, P.; Gasperin, M.; Petelin, D. Bearing fault prognostics based on signal complexity and Gaussian process models. In Proceedings of the 2012 IEEE Conference on Prognostics and Health Management (PHM), Denver, CO, USA, 18–21 June 2012. [Google Scholar]
- Rasmussen, C.E. Gaussian Processes in Machine Learning. In Advanced Lectures on Machine Learning; Bousquet, O., von Luxburg, U., Ratsch, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3176. [Google Scholar]
- Amirhossein, G.; Lee, H.H. Probabilistic frequency-domain discrete wavelet transform for better detection of bearing faults in induction motors. Neurocomputing 2016, 188, 206–216. [Google Scholar]
- Liu, J.; Wang, W.; Golnaraghi, F. An enhanced diagnostic scheme for bearing con- dition monitoring. IEEE Trans. Instrum. Meas. 2010, 59, 309–321. [Google Scholar]
- Sikorska, J.Z.; Hodkiewicz, M.; Ma, L. Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 2011, 25, 1803–1836. [Google Scholar] [CrossRef]
- Guo, L.; Li, N.P.; Jia, F.; Lei, Y.G. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 2017, 240, 98–109. [Google Scholar] [CrossRef]
- Wang, D.; Shen, C.Q. An equivalent cyclic energy indicator for bearing performance degradation assessment. J. Vib. Control 2016, 22, 2380–2388. [Google Scholar] [CrossRef]
- Guo, L.; Lei, Y.G.; Li, N.P.; Yan, T. Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing 2018, 292, 142–150. [Google Scholar] [CrossRef]
- Loutas, T.H.; Roulias, D.; Georgoulas, G. Remaining Useful Life Estimation in Rolling Bearings Utilizing Data-Driven Probabilistic E-Support Vectors Regression. IEEE Trans. Reliab. 2013, 62, 821–832. [Google Scholar] [CrossRef]
- Ren, L.; Sun, Y.Q.; Cui, J.; Zhang, L. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. J. Manuf. Syst. 2018, 48, 71–77. [Google Scholar] [CrossRef]
- Sutrisno, E.; Oh, H.; Vasan, A.S.S.; Pecht, M. Estimation of remaining useful life of ball bearings using data driven methodologies. In Proceedings of the 2012 IEEE Conference on Prognostics and Health Management, Denver, CO, USA, 18–21 June 2012; pp. 1–7. [Google Scholar]
- Caesarendra, W.; Widodo, A.; Thom, P.H.; Yang, B.S. Combined Probability Approach and Indirect Data-Driven Method for Bearing Degradation Prognostics. IEEE Trans. Reliab. 2011, 60, 14–20. [Google Scholar] [CrossRef]
- Si, X.S.; W, W.B.; Hu, C.H.; Zhou, D.H. emaining useful life estimation—A review on the statistical data driven approaches. Eur. J. Oper. Res. 2011, 213, 1–14. [Google Scholar] [CrossRef]
- Liu, F.; Shen, C.Q.; He, Q.B.; Zhang, A. Wayside bearing fault diagnosis based on a data-driven Doppler effect eliminator and transient model analysis. Sensors 2014, 14, 8096–8125. [Google Scholar] [CrossRef] [Green Version]
- Krush, M.T.; Agnihotri, R.; Trainor, K.J. A Contingency Model of Marketing Dashboards and Their Influence on Marketing Strategy Implementation Speed and Market Information Management Capability. Eur. J. Mark. 2016, 50, 2077–2102. [Google Scholar] [CrossRef]
- Wilson, R.D. Using Clickstream Data to Enhance Business-to-Business Web Site Performance. J. Bus. Ind. Mark. 2010, 25, 177–187. [Google Scholar] [CrossRef]
- Laukens, K.; Eyckmans, M.; Neuter, N.D. Preparing students for the data-driven life science era through a real-world viral infection case. J. Biol. Educ. 2019, 1–10. [Google Scholar] [CrossRef]
- Irit, H.; Deeb, D.; Naim, S.; Elad, Y.T. Can internet search engine queries be used to diagnose diabetes? Analysis of archival search data. Acta Diabetol. 2019, 56, 1149–1154. [Google Scholar]
- Fu, C.; Chang, W.J.; Liu, W.Y.; Yang, S.L. Data-driven group decision making for diagnosis of thyroid nodule. Sciece China Inf. Sci. 2019, 62, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Deshpande, A.; Ho, S.S.; Ku, J.S.; Sarma, S.E. Urban Street Lighting Infrastructure Monitoring using a Mobile Sensor Platform. IEEE Sens. J. 2016, 16, 4981–4994. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Xu, Y.R.; Zhu, Z.F.; Chen, C.W. Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Nat. Hazards 2019, 97, 579–609. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef]
- Ren, L.; Cui, J.; Sun, Y.Q.; Cheng, X.J. Multi-bearing remaining useful life collaborative prediction: A deep learning approach. J. Manuf. Syst. 2017, 43, 248–256. [Google Scholar] [CrossRef]
- Hu, C.H.; Pei, H.; Wang, Z.Q.; Si, X.S. A new remaining useful life estimation method for equipment subjected to intervention of imperfect maintenance activities. Chin. J. Aeronaut. 2018, 31, 514–528. [Google Scholar] [CrossRef]
- Sun, G.L.; Li, J.B.; Dai, J.; Song, Z.C. Feature selection for IoT based on maximal information coefficient. Future Gener. Comput. Syst. 2018, 89, 606–616. [Google Scholar] [CrossRef]
- Wang, F.T.; Liu, X.F.; Deng, G. Remaining Life Prediction Method for Rolling Bearing Based on the Long Short-Term Memory Network. Neural Process. Lett. 2019, 50, 2437–2454. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X. A deep feature optimization fusion method for extracting bearing degradation features. IEEE Access 2018, 6, 19640–19653. [Google Scholar] [CrossRef]
- Wang, D.; Tsui, K.; Miao, Q. Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators. IEEE Access 2018, 6, 665–676. [Google Scholar] [CrossRef]
- Tang, X.H.; Wang, J.C.; Lu, J.G.; Liu, G.K. Improving bearing fault diagnosis using maximum information coefficient based feature selection. Appl. Sci. Basel 2018, 8, 2143. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Tang, G.; Zhou, Y.G.; Wang, H.Q.; Li, G.Z. Prediction of bearing performance degradation with bottleneck feature based on LSTM network. In Proceedings of the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May 2018; pp. 1–6. [Google Scholar]
- Zhang, B.; Zhang, S.H.; Li, W.H. Bearing performance degradation assessment using long short-term memory recurrent network. Comput. Ind. 2019, 106, 14–29. [Google Scholar] [CrossRef]
- Mao, W.T.; He, J.L.; Tang, J.M.; Li, Y. Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network. Adv. Mech. Eng. 2019, 10, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Xiong, R.; He, H.W.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Lei, Y.G.; Li, N.P.; Guo, L.; Li, N.B. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Yu, L.; Liu, H. Eficient Feature Selection Via Analysis of Relevance and Redundancy. J. Mach. Learn. Res. 2004, 5, 1205–1224. [Google Scholar]
- Yang, Y.M.; Pedersen, J.O. A comparative study on feature selection in text categorization. In Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, USA, 8–12 July 1997; pp. 412–420. [Google Scholar]
- Koller, D.; Sahami, M. Toward optimal feature selection. In Proceedings of the 13th International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; pp. 284–292. [Google Scholar]
- Reshef, D.N.; Reshef, Y.A.; Finuca, H.K.; Grossman, S.R. Detecting Novel Associations in Large Data Sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, G.H.; Francisco, G.V.; Belen, M.B.; Moreno-Vega, J.M. High-dimensional feature selection via feature grouping: A variable neighborhood search approach. Inf. Sci. 2016, 326, 102–118. [Google Scholar]
- Wang, B.; Lei, Y.G.; Li, N.P.; Li, N.B. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings. IEEE Trans. Reliab. 2018, 1–12. [Google Scholar] [CrossRef]
- Yu, J.B. Adaptive hidden Markov model-based online learning framework for bearing faulty detection and performance degradation monitoring. Mech. Syst. Signal Process. 2017, 83, 149–162. [Google Scholar] [CrossRef]
- Lei, Y.G.; He, Z.J.; Zi, Y.Y. A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst. Appl. 2008, 35, 1593–1600. [Google Scholar] [CrossRef]
- Kundu, P.; Chopra, S.; Lad, B.K. Multiple failure behaviors identification and remaining useful life prediction of ball bearings. J. Intell. Manuf. 2017, 7, 1–13. [Google Scholar]
Operating Condition | Rotating Speed (rpm) | Radial Force (KN) | Bearings Dataset |
---|---|---|---|
Condition A | 2100 | 12 | Bearing1_1 Bearing1_2 Bearing1_3 Bearing1_4 Bearing1_5 |
Condition B | 2250 | 11 | Bearing2_1 Bearing2_2 Bearing2_3 Bearing2_4 Bearing2_5 |
Condition C | 2400 | 10 | Bearing3_1 Bearing3_2 Bearing3_3 Bearing3_4 Bearing3_5 |
Feature | Time-Domain Feature Parameters | Feature | Frequency-Domain Feature Parameters |
---|---|---|---|
where is the time-domain signal series, for , N is the number of each sample points. | where is the frequency-domain signal series, for , K is the number of spectral lines. is the frequency value of the k-th spectral line. |
Operating Condition | Feature Selection Method | Prediction Results (MSE) | |
---|---|---|---|
LSTM | LSTM-AdaBoost | ||
Condition A 2100 rpm | No feature selection | 471.28 | 317.43 |
PCA | 359.44 | 244.06 | |
mRMR | 221.64 | 162.90 | |
FCBF + Markov Blanket | 82.96 | 67.09 | |
Proposed method | 19.68 | 10.02 | |
Condition B 2250 rpm | No feature selection | 322.81 | 263.26 |
PCA | 206.92 | 141.32 | |
mRMR | 186.46 | 127.24 | |
FCBF + Markov Blanket | 46.62 | 41.18 | |
Proposed method | 13.29 | 7.06 | |
Condition A 2400 rpm | No feature selection | 419.36 | 179.02 |
PCA | 143.52 | 97.21 | |
mRMR | 193.77 | 102.06 | |
FCBF + Markov Blanket | 64.27 | 28.64 | |
Proposed method | 21.49 | 15.06 |
Moment | Real RUL | No Feature Selection | PCA | mRMR | FCBF + Markov Blanket | Proposed Method | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LSTM | LSTM-AdaBoost | LSTM | LSTM-AdaBoost | LSTM | LSTM-AdaBoost | LSTM | LSTM-AdaBoost | LSTM | LSTM-AdaBoost | ||||||||||||
(Min) | (Min) | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute | Predicted | Absolute |
RUL | Error | RUL | Error | RUL | Error | RUL | Error | RUL | Error | RUL | Error | RUL | Error | RUL | Error | RUL | Error | RUL | Error | ||
45 | 113 | 102.43 | 10.57 | 124.7 | 11.7 | 122.27 | 9.27 | 119.3 | 6.3 | 99.35 | 13.65 | 118.92 | 5.92 | 119 | 6 | 110.32 | 2.68 | 107 | 6 | 116.61 | 3.61 |
55 | 103 | 113.7 | 10.7 | 108.23 | 5.23 | 98.3 | 4.7 | 98.11 | 4.89 | 95.87 | 7.13 | 111.4 | 8.4 | 99.3 | 3.7 | 105.25 | 2.25 | 105 | 2 | 101 | 2 |
65 | 93 | 101.09 | 8.09 | 99.64 | 6.64 | 105 | 12 | 97.04 | 4.04 | 88.3 | 4.7 | 98.18 | 5.18 | 89.6 | 3.4 | 95.77 | 2.77 | 95.9 | 2.9 | 95.28 | 2.28 |
75 | 83 | 92.14 | 9.14 | 89.96 | 6.96 | 86.6 | 3.6 | 78.15 | 4.85 | 79.17 | 3.83 | 90.96 | 7.96 | 90.2 | 7.2 | 87.13 | 4.13 | 86.5 | 3.5 | 81.32 | 1.68 |
85 | 73 | 68.22 | 4.78 | 67.8 | 5.2 | 79.1 | 6.1 | 69.32 | 3.68 | 77 | 4 | 75.82 | 2.82 | 76.31 | 3.31 | 74.29 | 1.29 | 75.13 | 2.13 | 72.91 | 0.09 |
95 | 63 | 67.04 | 4.04 | 58.39 | 4.61 | 69.4 | 6.4 | 65.51 | 2.51 | 60.4 | 2.6 | 59.79 | 3.21 | 61.4 | 1.6 | 64.6 | 1.6 | 64.02 | 1.02 | 63.29 | 0.29 |
105 | 53 | 42.93 | 10.07 | 56.77 | 3.77 | 55.8 | 2.8 | 54.91 | 1.91 | 47.2 | 5.8 | 57.03 | 4.03 | 56 | 3 | 54.94 | 1.94 | 54.72 | 1.72 | 54.41 | 1.41 |
115 | 43 | 37.91 | 5.09 | 46.47 | 3.47 | 47 | 4 | 46.76 | 3.76 | 40.8 | 2.2 | 45.19 | 2.19 | 42.11 | 0.89 | 45.79 | 2.79 | 42.09 | 0.91 | 43.55 | 0.55 |
125 | 33 | 36.25 | 3.25 | 38.06 | 5.06 | 30.58 | 2.42 | 31.77 | 1.23 | 30.2 | 2.8 | 35.27 | 2.27 | 36.5 | 3.5 | 34.18 | 1.18 | 35.2 | 2.2 | 34.29 | 1.29 |
135 | 23 | 28.03 | 5.03 | 26.48 | 3.48 | 24.9 | 1.9 | 25.73 | 2.73 | 24.6 | 1.6 | 22.39 | 0.61 | 26.17 | 3.17 | 22.16 | 0.84 | 24.8 | 1.8 | 23.53 | 0.53 |
145 | 13 | 15.23 | 2.23 | 15.5 | 2.5 | 15.02 | 2.02 | 14.7 | 1.7 | 14.37 | 1.37 | 15.91 | 2.91 | 15.41 | 2.41 | 12.4 | 0.6 | 14.33 | 1.33 | 13.6 | 0.6 |
155 | 3 | 4.29 | 1.29 | 3.73 | 0.73 | 4.02 | 1.02 | 3.79 | 0.79 | 3.77 | 0.77 | 3.72 | 0.72 | 3.68 | 0.68 | 2.49 | 0.51 | 2.63 | 0.37 | 2.87 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Wang, H. An Ensemble Learning and RUL Prediction Method Based on Bearings Degradation Indicator Construction. Appl. Sci. 2020, 10, 346. https://doi.org/10.3390/app10010346
Tian Q, Wang H. An Ensemble Learning and RUL Prediction Method Based on Bearings Degradation Indicator Construction. Applied Sciences. 2020; 10(1):346. https://doi.org/10.3390/app10010346
Chicago/Turabian StyleTian, Qiaoping, and Honglei Wang. 2020. "An Ensemble Learning and RUL Prediction Method Based on Bearings Degradation Indicator Construction" Applied Sciences 10, no. 1: 346. https://doi.org/10.3390/app10010346
APA StyleTian, Q., & Wang, H. (2020). An Ensemble Learning and RUL Prediction Method Based on Bearings Degradation Indicator Construction. Applied Sciences, 10(1), 346. https://doi.org/10.3390/app10010346