Parameter Evaluation of Exponential-Form Critical State Line of a State-Dependent Sand Constitutive Model
Abstract
:Featured Application
Abstract
1. Introduction
2. Model Description
- , at the beginning of the test;
- , in achievement of the critical state.
3. Effect of Model Constant on Critical State
3.1. Liquefaction Behaviour in Loose State
3.2. Dilatant Behaviour in Dense State
4. Disussion
5. Conclusions
- Model constant had a predominant effect in loose state because it had a clear physical meaning. The substitution of by is recommended, and the numerical results were consistent with the real experimental data. Moreover, in loose state, model constant did not play an important role.
- In dense state, the influence of initial confining pressure on critical state cannot be neglected and should be corrected with the initial confining pressure. An empirical equation is proposed on the basis of Hostun RF clean sand.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Notation
d | dilatancy |
e | void ratio |
εv | volumetric strain |
εq | shear strain |
f | yield surface |
state parameter | |
G | shear modulus |
IDi | density index |
K | elastic bulk modulus |
Kp | plastic hardening modulus |
M | stress ratio at critical state |
L | loading index |
ν | Poisson’s ratio |
p’ | mean effective stress |
pa | atmospheric pressure |
σc’ | isotropic confining pressure |
η | stress ratio |
References
- Roscoe, K.H.; Schofield, A.N. Mechanical behaviour of an idealized ‘wet’ clay. In Proceedings of the European Conference on Soil Mechanics and Geotechnical Engineering, Wiesbaden, Germany, 15–18 October 1963; pp. 47–54. [Google Scholar]
- Roscoe, K.; Burland, J.B. On the generalized stress-strain behaviour of wet clay. Eng. Plast. 1968, 535–609. [Google Scholar] [CrossRef]
- Verdugo, R.; Ishihara, K. The steady state of sandy soils. Soils Found. 1996, 36, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Li, X.S.; Dafalias, Y.F. Dilatancy for cohesionless soils. Geotechnique 2000, 50, 449–460. [Google Scholar] [CrossRef]
- Been, K.; Jefferies, M.G. A state parameter for sands. Geotechnique 1985, 35, 99–112. [Google Scholar] [CrossRef]
- Benahmed, N. Comportement Mécanique d’un Sable Sous Cisaillement Monotone et Cyclique: Application aux Phénomènes de Liquéfacton et de Mobilité Cyclique. Ph.D. Thesis, de l’Ecole Des Ponts et Chaussées, Paris, France, 2001. (In French). [Google Scholar]
- Jardi, L. Study of the Influence of Fines Particles on the Properties of Liquefaction of Sands. Ph.D. Thesis, de l’Ecole Des Ponts et Chaussées, Paris, France, 2018. [Google Scholar]
- Li, X.S.; Wang, Y. Linear representation of steady-state line for sand. J. Geotech. Geoenviron. Eng. 1998, 124, 1215–1217. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, J.M. Sand constitutive model considering physical state changes. J. Hydraul. Eng. 2004, 26–31. (In Chinese) [Google Scholar] [CrossRef]
- Richart, F.E.; Hall, J.R.; Woods, R.D. Vibrations of Soils and Foundations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1970. [Google Scholar]
- Dafalias, Y.F. An anisotropic critical state soil plasticity model. Mech. Res. Commun. 1986, 13, 341–347. [Google Scholar] [CrossRef]
- Wang, Z.L.; Dafalias, Y.F.; Shen, C.K. Bounding surface hypoplasticity model for sand. J. Eng. Mech. 1990, 116, 983–1001. [Google Scholar] [CrossRef]
- Chi, M.J.; Zhao, C.G.; Li, X.J. Research on constitutive model for dilatant sand. Rock Soil Mech. 2008, 29, 2. (In Chinese) [Google Scholar] [CrossRef]
Elastic Parameters | Critical State Parameters | Dilatancy Parameters | Hardening Parameters | Sand Property |
---|---|---|---|---|
= 176 | M = 1.22 | n = 0.42 | α = 0.63 | = 1 |
ν = 0.176 | = −0.030 a = 1.00 | - | β = −2.5 | = 0.656 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Cheng, W. Parameter Evaluation of Exponential-Form Critical State Line of a State-Dependent Sand Constitutive Model. Appl. Sci. 2020, 10, 328. https://doi.org/10.3390/app10010328
Zhu Z, Cheng W. Parameter Evaluation of Exponential-Form Critical State Line of a State-Dependent Sand Constitutive Model. Applied Sciences. 2020; 10(1):328. https://doi.org/10.3390/app10010328
Chicago/Turabian StyleZhu, Zhehao, and Wei Cheng. 2020. "Parameter Evaluation of Exponential-Form Critical State Line of a State-Dependent Sand Constitutive Model" Applied Sciences 10, no. 1: 328. https://doi.org/10.3390/app10010328
APA StyleZhu, Z., & Cheng, W. (2020). Parameter Evaluation of Exponential-Form Critical State Line of a State-Dependent Sand Constitutive Model. Applied Sciences, 10(1), 328. https://doi.org/10.3390/app10010328