Controllable Combustion Synthesis of SiC Nanowhiskers in a Si-C-N System: The Role of the Catalyst
Abstract
:1. Introduction
2. Experimental
3. Results and Discussions
3.1. Characterization of Combustion Synthesized (CSed) Silicon carbide Nanowhiskers (SiC NWs)
3.2. First-Principles Modeling: Adsorption of C, N, and Si Atoms on Different Planes of W Crystal
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xia, M.; Ge, C.; Yan, Q.; Guo, H.; Yue, L. Ti-assisted β-SiC nanowhiskers by pyrolysis of PTFE: Synthesis and mechanical properties. Appl. Phys. A 2012, 107, 777–782. [Google Scholar] [CrossRef]
- Xia, M.; Yang, S.; Guo, H.; Hao, W.; Yan, Q.; Ge, C. Observation of intermediate template directed SiC nanowire growth in Si–C–N systems. Nanotechnology 2012, 23, 415704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nishitani-Gamo, M.; Xiao, C.; And, T. Synthesis of 3C–SiC nanowhiskers and emission of visible photoluminescence. J. Appl. Phys. 2002, 91, 6066–6070. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Li, X.; Yang, W. One-dimensional SiC nanostructures: Designed growth, properties, and applications. Prog. Mater. Sci. 2019, 104, 138–214. [Google Scholar] [CrossRef]
- Chen, K.; Huang, Z.; Huang, J.; Fang, M.; Liu, Y.-A.; Ji, H.; Yin, L. Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant. Ceram. Int. 2013, 39, 1957–1962. [Google Scholar] [CrossRef]
- Lin, L. Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions. Nanoscale 2011, 3, 1582–1591. [Google Scholar] [CrossRef]
- Yang, G.Z.; Cui, H.; Sun, Y.; Gong, L.; Chen, J.; Jiang, D.; Wang, X.C. Simple Catalyst-Free Method to the Synthesis of β-SiC Nanowires and Their Field Emission Properties. J. Phys. Chem. C 2009, 113, 15969–15973. [Google Scholar] [CrossRef]
- Liu, X.; Yao, K. Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables. Nanotechnology 2005, 16, 2932. [Google Scholar] [CrossRef]
- Rogowski, J.; Andrzejczuk, M.; Berlowska, J.; Binczarski, M.; Kregiel, D.; Kubiak, A.; Modelska, M.; Szubiakiewicz, E.; Stanishevsky, A.; Tomaszewska, J.; et al. WxC-β-SiC Nanocomposite Catalysts Used in Aqueous Phase Hydrogenation of Furfural. Molecules 2017, 22, 2033. [Google Scholar] [CrossRef] [Green Version]
- Kahar, S.M.; Voon, C.H.; Lee, C.C.; Hashim, U.; Mdarshad, M.K.; Lim, B.Y.; Gopinath, S.C.B.; Rahman, W. Synthesis of SiC nanowhiskers from graphite and silica by microwave heating. Mater. Sci. Pol. 2016, 34, 770–779. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Li, M.; Hu, P.; Cheng, Y.; Sun, B. Synthesis of several millimeters long SiC–SiO2 nanowires by a catalyst-free technique. J. Cryst. Growth 2016, 453, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Voon, C.H.; Lim, B.Y.; Gopinath, S.C.B.; Tan, H.S.; Tony, V.C.S.; Arshad, M.K.M.; Foo, K.L.; Hashim, U. Green Synthesis of Silicon Carbide Nanowhiskers by Microwave Heating of Blends of Palm Kernel Shell and Silica. IOP Conf. Ser. Mater. Sci. Eng. 2016, 160, 12057. [Google Scholar] [CrossRef] [Green Version]
- Prakash, J.; Venugopalan, R.; Tripathi, B.M.; Ghoshb, S.K.; Chakravarttya, J.K.; Tyagic, A.K. Chemistry of one dimensional silicon carbide materials: Principle, production, application and future prospects. Prog. Solid State Chem. 2015, 43, 98–122. [Google Scholar] [CrossRef]
- Hu, W.; Wang, L.; Wu, Q.; Wu, H. Preparation, characterization and microwave absorption properties of bamboo-like β-SiC nanowhiskers by molten-salt synthesis. J. Mater. Sci. Mater. Electron. 2014, 25, 5302–5308. [Google Scholar] [CrossRef]
- Chu, A.; Qin, M.; Li, D.; Wu, H.; Cao, Z.; Qu, X. Preparation of SiC nanopowder using low-temperature combustion synthesized precursor. Mater. Chem. Phys. 2014, 144, 560–567. [Google Scholar] [CrossRef]
- Zhou, X.T.; Wang, N.; Lai, H.L.; Peng, H.Y.; Bello, I.; Wong, N.B.; Lee, C.S.; Lee, S.T. β-SiC nanorods synthesized by hot filament chemical vapor deposition. Appl. Phys. Lett. 1999, 74, 3942–3944. [Google Scholar] [CrossRef]
- Huczko, A.; Osica, M.; Rutkowska, A.; Bystrzejewski, M.; Lange, H.; Cudziło, S. A self-assembly SHS approach to form silicon carbide nanofibres. J. Phys. Condens. Matter 2007, 19, 395022. [Google Scholar] [CrossRef]
- Merzhanov, A.G. The chemistry of self-propagating high-temperature synthesis. J. Mater. Chem. 2004, 14, 1779–1786. [Google Scholar] [CrossRef]
- Yang, K.; Yang, Y.; Lin, Z.; Li, J.; Du, J. Mechanical-activation-assisted combustion synthesis of SiC powders with polytetrafluoroethylene as promoter. Mater. Res. Bull. 2007, 42, 1625–1632. [Google Scholar] [CrossRef]
- Zhang, J.; Jeong, J.C.; Lee, J.H.; Won, C.W.; Kim, D.J.; Kim, C.O. The effect of carbon sources and activative additive on the formation of SiC powder in combustion reaction. Mater. Res. Bull. 2002, 37, 319–329. [Google Scholar] [CrossRef]
- Zeng, J.; Miyamoto, Y.; Yamada, O. Combustion Synthesis of Si3N4–SiC Composite Powders. J. Am. Ceram. Soc. 1991, 74, 2197–2200. [Google Scholar] [CrossRef]
- Cao, Y.G.; Chen, H.; Li, J.T.; Ge, C.C.; Tang, S.Y.; Tang, J.X.; Chen, X. Formation of α-Si3N4 whiskers with addition of NaN3 as catalyst. J. Cryst. Growth 2002, 234, 9–11. [Google Scholar] [CrossRef]
- Ge, C.C.; Wang, F.; Sheng, W.P. Development of SHS-Si3N4 in LSCPM. Key Eng. Mater. 2007, 280, 1191–1196. [Google Scholar] [CrossRef]
- Naidu, S.V.N.; Sriramamurthy, A.M.; Rao, P.R. The Si—W (Silicon--Tungsten) System. J. Alloy. Phase Diagr. 1989, 5, 149–158. [Google Scholar]
- Li, X.K.; Liu, L.; Zhang, Y.X.; Shen, S.D.; Ge, S.; Ling, L.C. Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon 2001, 39, 159–165. [Google Scholar] [CrossRef]
- Furthmüller, J.; Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Joubert, D.; Kresse, G. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar]
- Burke, K.; Ernzerhof, M.; Perdew, J.P. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar]
- Pack, J.D.; Monkhorst, H.J. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Xiao, W.; Luo, G.N.; Geng, W.T. Threshold concentration for H blistering in defect free W. J. Nucl. Mater. 2012, 421, 176–180. [Google Scholar] [CrossRef] [Green Version]
Sample | SC | W-SC | Role |
---|---|---|---|
Si (wt.%) | 85 | 85 | Raw materials |
Si3N4 (wt.%) | 8 | 8 | Diluent [23] |
NH4F (wt.%) | 2 | 2 | Active diluent [23] |
W (wt.%) | 0 | 5 | Catalyst |
PTFE (vol.%) | 50 | 50 | Create C element\spatial for whisker growth\supply combustion energy [1] |
Surface | Esurf/(J·m−2) | Adsorption Site | Ead/eV | ||
---|---|---|---|---|---|
C | N | Si | |||
W (100) | 3.96 | top1 | −6.66 | −8.63 | −4.20 |
top2 | −11.12 | −10.82 | −7.38 | ||
bridge | −8.87 | −9.98 | −8.15 | ||
W (110) | 3.28 | top1 | −6.06 | −7.55 | −4.12 |
top2 | −9.31 | −10.03 | −5.76 | ||
bridge | −8.30 | −8.25 | -4.97 | ||
W (111) | 3.76 | top | −5.21 | −7.12 | −4.47 |
hcp | −6.71 | −7.38 | −4.73 | ||
fcc | −7.79 | −7.36 | −6.37 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Guo, H.-Y.; Hussain, M.I. Controllable Combustion Synthesis of SiC Nanowhiskers in a Si-C-N System: The Role of the Catalyst. Appl. Sci. 2020, 10, 252. https://doi.org/10.3390/app10010252
Xia M, Guo H-Y, Hussain MI. Controllable Combustion Synthesis of SiC Nanowhiskers in a Si-C-N System: The Role of the Catalyst. Applied Sciences. 2020; 10(1):252. https://doi.org/10.3390/app10010252
Chicago/Turabian StyleXia, Min, Hong-Yan Guo, and Muhammad Irfan Hussain. 2020. "Controllable Combustion Synthesis of SiC Nanowhiskers in a Si-C-N System: The Role of the Catalyst" Applied Sciences 10, no. 1: 252. https://doi.org/10.3390/app10010252
APA StyleXia, M., Guo, H.-Y., & Hussain, M. I. (2020). Controllable Combustion Synthesis of SiC Nanowhiskers in a Si-C-N System: The Role of the Catalyst. Applied Sciences, 10(1), 252. https://doi.org/10.3390/app10010252