Direct-Mapping-Based MIMO-FBMC Underwater Acoustic Communication Architecture for Multimedia Signals
Abstract
:1. Introduction
2. System Models
- Step 1:
- With the output information obtained from the OCPN mechanism, assign the transmission packet rates for underwater voice, image, and data signals
- Step 2:
- Adopt the appropriate modulation scheme to meet the quality of services requirements for underwater voice, image, and data multimedia communication.
- Step 3:
- Set up the initial underwater transmission power level of as 0.54 for voice, image, and data multimedia signals.
- Step 4:
- Measure the received , , and of the n-th user, for received underwater voice, image, and data multimedia packets, respectively.
- Step 5:
- If the measured , , and of the received underwater voice, image, and data multimedia packets, respectively, exceed the underwater multimedia threshold SNRs at the required multimedia BERs of , , and , respectively, for voice; and the image or data packets are achieved, then update as , where is equal to 0.09.If , go to Step 4; otherwise, go to Step 7.
- Step 6:
- If the measured , , and of the received underwater voice, image, and data multimedia packets, respectively, is less than the underwater multimedia threshold SNRs at the required multimedia BERs of , , and , respectively, for voice; and the image or data packets is achieved, then update as , where is equal to 0.09.If , go to Step 4; otherwise, go to Step 7.
- Step 7:
- Downgrade the modulation scheme. If the modulation scheme is not 4-OQAM, then go to Step 4.
- Step 8:
- Upgrade the modulation scheme. If the modulation scheme is not BPSK, go to Step 4.
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AWGN | additive white Gaussion noise |
BER | bit error rate |
BPSK | binary phase shift keying |
CEEs | channel estimation errors |
DM | direct mapping |
DSE | data symbol error |
FBMC | filter bank multi-carrier |
FEC | forward error correction |
FMT | Filtered Multitone |
FFT | fast Fourier transform |
GS | Gold sequence |
IFFT | inverse fast Fourier transform |
LDPC | low-density parity-check code |
MIMO | multi-input multi-output |
MMSE | minimum mean-squared error |
MSE | mean square error |
OCPN | object-composition petrinet |
OFDM | orthogonal frequency division multiplexing |
OMP | orthogonal matching pursuit |
OQAM | offset quadrature amplitude modulation |
OVSF | orthogonal variable spreading factor |
PAPR | peak to average power ratio |
PPNs | polyphase networks |
PS | power-saving |
PSNR | peak SNR |
SNR | signal-to-noise ratio |
STBC | space time block code |
UAC | underwater acoustic channel |
UAMC | underwater acoustic multimedia communication |
UAMCA | underwater acoustic multimedia communication architecture |
UMSNs | underwater multimedia sensor networks |
UMTPAA | underwater multimedia transmission power allocation algorithm |
USTE | underwater simulation transmission experiment |
References
- Zhou, J.; Jiang, H.; Wu, P.; Chen, Q. Study of propagation channel characteristics for underwater acoustic communication environments. IEEE Access 2019, 7, 79348–79445. [Google Scholar] [CrossRef]
- Sarisaray-Boluk, P.; Gungor, V.C.; Baydere, S.; Harmanci, A.E. Quality aware image transmission over underwater multimedia sensor networks. Ad Hoc Netw. 2011, 9, 1287–1301. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, R.; Wang, W.; Chen, Q.; Wang, X. Channel modelling and estimation for shallow underwater acoustic OFDM communication via simulation platform. Appl. Sci. 2019, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Woodward, B.; Shi, H. Digital underwater acoustic voice communications. IEEE J. Ocean. Eng. 1996, 21, 181–192. [Google Scholar] [CrossRef]
- Mahmood, S.; Sadeghi, J.; Derakhtian, M.; Ali, M.; Shirazi, M. Design and Implementation of an OFDM-based voice transmission system for mobile underwater vehicles. In Proceedings of the IEEE 2012 Symposium on Computers and Communications, Cappadocia, Turkey, 1–4 July 2012. [Google Scholar]
- Chen, W.; Yuan, F.; Yi, Z.; Chen, E. Real-time measurement for experience quality of underwater acoustic voice communication. In Proceedings of the 2016 IEEE/OES China Ocean Acoustics, Harbin, China, 9–11 January 2016. [Google Scholar]
- Bocus, M.J.; Agrafiotis, D.; Angela Doufexi, A. Underwater acoustic video transmission using MIMO-FBMC. In Proceedings of the 2018 MTS/IEEE Kobe Techno-Oceans, Kobe, Japan, 28–31 May 2018. [Google Scholar]
- Zakaria, R.; Ruyet, D.L. A novel filter-bank multicarrier scheme to mitigate the intrinsic interference: Application to MIMO systems. IEEE Trans. Wirel. Commun. 2012, 11, 1112–1123. [Google Scholar] [CrossRef] [Green Version]
- Caus, M.; Pérez-Neira, A.I. Multi-stream transmission for highly frequency selective channels in MIMO-FBMC/OQAM systems. IEEE Trans. Signal Proc. 2014, 62, 786–796. [Google Scholar] [CrossRef]
- Wang, H. Sparse channel estimation for MIMO-FBMC/OQAM wireless communications in smart city applications. IEEE Access 2018, 6, 60666–60672. [Google Scholar] [CrossRef]
- Wang, H.; Xu, L.; Wang, X.; Taheri, S. Preamble design with interference cancellation for channel estimation in MIMO-FBMC/OQAM systems. IEEE Access 2019, 6, 44072–44081. [Google Scholar] [CrossRef]
- Aminjavaheri, A.; Farhang, A.; Farhang-Boroujeny, B. Filter bank multicarrier in massive MIMO: Analysis and channel equalization. IEEE Trans. Signal Proc. 2018, 66, 3987–4000. [Google Scholar] [CrossRef] [Green Version]
- Zafar, A.; Zhang, L.; Xiao, P.; Imran, M.A. Spectrum efficient MIMO-FBMC system using filter output truncation. IEEE Trans. Veh. Technol. 2018, 67, 2367–2381. [Google Scholar] [CrossRef] [Green Version]
- Sim, D.; Lee, C. A MIMO receiver with two-dimensional ordering for maximum likelihood detection in FBMC-QAM. IEEE Commun. Lett. 2017, 21, 1465–1468. [Google Scholar] [CrossRef]
- Sun, L.; Wang, M.; Zhang, G.; Li, H.; Huang, L. Filtered multitone modulation underwater acoustic communications using low-complexity channel-estimation-based MMSE turbo equalization. Sensors 2019, 19, 2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, G.; Babar, Z.; Zhou, F.; Ma, L.; Li, X. Low-complexity progressive MIMO-OFDM receiver for underwater acoustic communication. Symmetry 2019, 11, 362. [Google Scholar] [CrossRef] [Green Version]
- Amini, P.; Chen, R.R.; Behrouz, B.F. Filterbank multicarrier communications for underwater acoustic channels. IEEE J. Ocean. Eng. 2015, 40, 115–130. [Google Scholar] [CrossRef]
- Lin, C.F.; Chen, J.Y.; Yu, Y.J.; Yan, J.T.; Chang, S.H. Direct mapping OVSF-based transmission scheme for underwater acoustic multimedia communication. J. Mar. Sci. Technol. 2010, 18, 413–418. [Google Scholar]
- Lin, C.F.; Chang, S.H.; Lee, C.C.; Wu, W.C.; Chen, W.H.; Chang, K.H.; Parinov, I. Underwater acoustic multimedia communication based on MIMO–OFDM. Wirel. Pers. Commun. 2013, 71, 1231–1245. [Google Scholar] [CrossRef]
- Lin, C.F.; Lai, H.H.; Chang, S.H. MIMO GS OVSF/OFDM based underwater acoustic multimedia communication scheme. Wirel. Pers. Commun. 2018, 101, 601–617. [Google Scholar] [CrossRef]
- Lin, C.F.; Hung, Y.T.; Lu, H.W.; Chang, S.H.; Parinov, I.; Shevtsov, S. FBMC/LDPC-based underwater transceiver architecture for voice and image transmission. J. Mar. Sci. Technol. 2018, 26, 327–334. [Google Scholar]
- Lin, C.F.; Li, C.K.; Chang, S.H.; Parinov, I.A.; Shevtsov, S. Direct mapping FBMC Based underwater transmission scheme for audio signals. In Advanced Materials; Parinov, I.A., Chang, S.H., Kim, Y.H., Eds.; Springer Proceedings in Physics 224; Springer: Cham, Switzerland, 2019; pp. 651–659. [Google Scholar]
- Lin, C.F.; Su, T.J.; Chang, S.H.; Parinov, I.A.; Shevtsov, S. Direct mapping Based FBMC-LDPC advanced underwater acoustic transmission scheme for data signals. In appear to Advanced Materials; Parinov, I.A., Chang, S.H., Kim, Y.H., Eds.; Springer Proceedings in Physics 224; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Woo, M.; Prabhu, N.; Ghafoor, A. Dynamic resource allocation for multimedia services in mobile communication environments. IEEE J. Sel. Areas Commun. 1995, 13, 913–922. [Google Scholar] [CrossRef]
- Bellanger, M. FBMC physical layer: A primer. Phydyas 2010, 25, 7–10. [Google Scholar]
- Terry, J.; Heiskala, J. OFDM Wireless LANs: A Theoretical and Practical Guide; Sams Publishing: Indianapolis, IN, USA, 2002. [Google Scholar]
- Zhang, J.; Zheng, Y.R.; Xiao, C. Frequency-domain equalization for single carrier MIMO underwater acoustic communications. In Proceedings of the MTS/IEEE Ocean International Conference, Quebec City, QC, Canada, 15–18 September 2008. [Google Scholar]
Technology | Technology Characteristics |
---|---|
FBMC modulation | PHYDAS FBMC technology [25] |
FFT size | 64-points |
Channel coding | (2000, 1000) LDPC code encoder with a code rate of 1/2, a column weight of 3, a row weight of 6 |
MIMO | 2 × 2 DM |
Power levels | 0.09, 0.18, 0.27, …, 1 |
BER limits for voice transmission | |
BER limits for image transmission | |
BER limits for data transmission |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-F.; Su, T.-J.; Chang, H.-K.; Lee, C.-K.; Chang, S.-H.; Parinov, I.A.; Shevtsov, S. Direct-Mapping-Based MIMO-FBMC Underwater Acoustic Communication Architecture for Multimedia Signals. Appl. Sci. 2020, 10, 233. https://doi.org/10.3390/app10010233
Lin C-F, Su T-J, Chang H-K, Lee C-K, Chang S-H, Parinov IA, Shevtsov S. Direct-Mapping-Based MIMO-FBMC Underwater Acoustic Communication Architecture for Multimedia Signals. Applied Sciences. 2020; 10(1):233. https://doi.org/10.3390/app10010233
Chicago/Turabian StyleLin, Chin-Feng, Tsung-Jen Su, Hung-Kai Chang, Chun-Kang Lee, Shun-Hsyung Chang, Ivan A. Parinov, and Sergey Shevtsov. 2020. "Direct-Mapping-Based MIMO-FBMC Underwater Acoustic Communication Architecture for Multimedia Signals" Applied Sciences 10, no. 1: 233. https://doi.org/10.3390/app10010233
APA StyleLin, C.-F., Su, T.-J., Chang, H.-K., Lee, C.-K., Chang, S.-H., Parinov, I. A., & Shevtsov, S. (2020). Direct-Mapping-Based MIMO-FBMC Underwater Acoustic Communication Architecture for Multimedia Signals. Applied Sciences, 10(1), 233. https://doi.org/10.3390/app10010233