# Predictive Maintenance on the Machining Process and Machine Tool

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Corrective Maintenance

#### 1.2. Preventive Maintenance

#### 1.3. Predictive Maintenance

- Data acquisition.
- Data processing.
- Machine decision making.

## 2. Data Acquisition

## 3. Data Processing

- Data cleaning.
- Data transformation.
- Data reduction.

#### 3.1. Data Cleaning

#### 3.2. Data Transformation

#### 3.3. Data Reduction

## 4. Machine Decision Making

#### 4.1. Diagnostics

#### 4.2. Prognostics

## 5. Case Study

#### 5.1. Industrial Process

#### 5.2. Acquisition

#### 5.3. Data Processing

#### 5.4. Concept Drift Detection

#### 5.5. Decision Making Application for RUL Estimation

#### 5.6. Remaining Useful Life Assessment

- RUL estimation.
- Application in a discrete machining process.
- Characterization of the signal acquired (Health Indicator (HI)).

## 6. Conclusions and Future Work

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Cimino, C.; Negri, E.; Fumagalli, L. Review of digital twin applications in manufacturing. Comput. Ind.
**2019**, 113, 103130. [Google Scholar] [CrossRef] - Galar, D.; Palo, M.; Van Horenbeek, A.; Pintelon, L. Integration of disparate data sources to perform maintenance prognosis and optimal decision making. Insight-Non-Destr. Test. Cond. Monit.
**2012**, 54, 440–445. [Google Scholar] [CrossRef] - Vathoopan, M.; Johny, M.; Zoitl, A.; Knoll, A. Modular fault ascription and corrective maintenance using a digital twin. IFAC-PapersOnLine
**2018**, 51, 1041–1046. [Google Scholar] [CrossRef] - Swanson, E.B. The dimensions of maintenance. In Proceedings of the 2nd International Conference on Software Engineering, Wuhan, China, 13–15 January 1976; pp. 492–497. [Google Scholar]
- Ashayeri, J. Development of computer-aided maintenance resources planning (CAMRP): A case of multiple CNC machining centers. Robot. -Comput.-Integr. Manuf.
**2007**, 23, 614–623. [Google Scholar] [CrossRef] - Coro, A.; Abasolo, M.; Aguirrebeitia, J.; Lopez de Lacalle, L. Inspection scheduling based on reliability updating of gas turbine welded structures. Adv. Mech. Eng.
**2019**, 11, 1687814018819285. [Google Scholar] [CrossRef] [Green Version] - Vilarinho, S.; Lopes, I.; Oliveira, J.A. Preventive maintenance decisions through maintenance optimization models: A case study. Procedia Manuf.
**2017**, 11, 1170–1177. [Google Scholar] [CrossRef] - Mobley, R.K. An Introduction to Predictive Maintenance; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Manco, G.; Ritacco, E.; Rullo, P.; Gallucci, L.; Astill, W.; Kimber, D.; Antonelli, M. Fault detection and explanation through big data analysis on sensor streams. Expert Syst. Appl.
**2017**, 87, 141–156. [Google Scholar] [CrossRef] - Aramesh, M.; Attia, M.; Kishawy, H.; Balazinski, M. Estimating the remaining useful tool life of worn tools under different cutting parameters: A survival life analysis during turning of titanium metal matrix composites (Ti-MMCs). CIRP J. Manuf. Sci. Technol.
**2016**, 12, 35–43. [Google Scholar] [CrossRef] - Modoni, G.E.; Trombetta, A.; Veniero, M.; Sacco, M.; Mourtzis, D. An event-driven integrative framework enabling information notification among manufacturing resources. Int. J. Comput. Integr. Manuf.
**2019**, 32, 241–252. [Google Scholar] [CrossRef] - Wu, R.; Huang, L.; Zhou, H. RHKV: An RDMA and HTM friendly key–value store for data-intensive computing. Future Gener. Comput. Syst.
**2019**, 92, 162–177. [Google Scholar] [CrossRef] - Lenzerini, M. Data Integration: A Theoretical Perspective. In Proceedings of the the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS02), Madison, WI, USA, 3–5 June 2002. [Google Scholar]
- Wei, R.; Wang, J.; Su, M.; Jia, E.; Chen, S.; Chen, T.; Ni, Y. Missing Value Imputation Approach for Mass Spectrometry-Based Metabolomics Data. Sci. Rep.
**2018**, 8, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Libralon, G.L.; de Leon Ferreira, A.C.P.; Lorena, A.C. Pre-processing for noise detection in gene expression classification data. J. Braz. Comput. Soc.
**2009**, 15, 3–11. [Google Scholar] [CrossRef] [Green Version] - Jin, B.; Chen, Y.; Li, D.; Poolla, K.; Sangiovanni-Vincentelli, A. A One-Class Support Vector Machine Calibration Method for Time Series Change Point Detection. arXiv
**2019**, arXiv:1902.06361. [Google Scholar] - Maronna, R.; Martin, R.D.; Yohai, V. Robust Statistics; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Jimenez Cortadi, A.; Irigoien, I.; Boto, F.; Sierra, B.; Suarez, A.; Galar, D. A statistical data-based approach to instability detection and wear prediction in radial turning processes. Eksploatacja i Niezawodnosc
**2018**, 20, 405–412. [Google Scholar] [CrossRef] - Mills, T.C. Applied Time Series Analysis: A Practical Guide to Modeling and Forecasting; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Yahyaoui, H.; Al-Daihani, R. A novel trend based SAX reduction technique for time series. Expert Syst. Appl.
**2019**, 130, 113–123. [Google Scholar] [CrossRef] - Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A
**2016**, 374, 20150202. [Google Scholar] [CrossRef] - Darst, B.F.; Malecki, K.C.; Engelman, C.D. Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet.
**2018**, 19, 65. [Google Scholar] [CrossRef] [Green Version] - Pouyet, E.; Rohani, N.; Katsaggelos, A.K.; Cossairt, O.; Walton, M. Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach. Pure Appl. Chem.
**2018**, 90, 493–506. [Google Scholar] [CrossRef] - Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res.
**2003**, 3, 1157–1182. [Google Scholar] - Wang, X.; Wirth, A.; Wang, L. Structure-based statistical features and multivariate time series clustering. In Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM 2007), Omaha, NE, USA, 28–31 October 2007; pp. 351–360. [Google Scholar]
- Galar, D.; Kumar, U. EMaintenance: Essential Electronic Tools for Efficiency; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Mattes, A.; Schöpka, U.; Schellenberger, M.; Scheibelhofer, P.; Leditzky, G. Virtual equipment for benchmarking predictive maintenance algorithms. In Proceedings of the 2012 Winter Simulation Conference (WSC), Berlin, Germany, 9–12 December 2012; pp. 1–12. [Google Scholar]
- Cartella, F.; Lemeire, J.; Dimiccoli, L.; Sahli, H. Hidden semi-Markov models for predictive maintenance. Math. Probl. Eng.
**2015**, 2015, 278120. [Google Scholar] [CrossRef] [Green Version] - Farokhzad, S.; Ahmadi, H.; Jaefari, A.; Abad, M.; Kohan, M.R. Artificial neural network based classification of faults in centrifugal water pump. J. Vibroeng.
**2012**, 14, 1734–1744. [Google Scholar] - Kanawaday, A.; Sane, A. Machine learning for predictive maintenance of industrial machines using iot sensor data. In Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 20–22 November 2017; pp. 87–90. [Google Scholar]
- Li, Z.; Wang, Y.; Wang, K.S. Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Adv. Manuf.
**2017**, 5, 377–387. [Google Scholar] [CrossRef] - Tyagi, C.S. A comparative study of SVM classifiers and artificial neural networks application for rolling element bearing fault diagnosis using wavelet transform preprocessing. Neuron
**2008**, 1, 309–317. [Google Scholar] - Widodo, A.; Yang, B.S. Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process.
**2007**, 21, 2560–2574. [Google Scholar] [CrossRef] - Diez-Olivan, A.; Del Ser, J.; Galar, D.; Sierra, B. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Inf. Fusion
**2019**, 50, 92–111. [Google Scholar] [CrossRef] - Tsymbal, A. The problem of concept drift: Definitions and related work. Comput. Sci. Dep. Trinity Coll. Dublin
**2004**, 106, 58. [Google Scholar] - Winkler, S.M.; Affenzeller, M.; Kronberger, G.; Kommenda, M.; Burlacu, B.; Wagner, S. Sliding window symbolic regression for detecting changes of system dynamics. In Genetic Programming Theory and Practice XII; Springer: Berlin/Heidelberg, Germany, 2015; pp. 91–107. [Google Scholar]
- Klinkenberg, R.; Joachims, T. Detecting concept drift with support vector machines. In Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June 29–2 July 2000; pp. 487–494. [Google Scholar]
- Zhukov, A.V.; Sidorov, D.N.; Foley, A.M. Random forest based approach for concept drift handling. In Proceedings of the International Conference on Analysis of Images, Social Networks and Texts, Yekaterinburg, Russia, 7–9 April 2016; pp. 69–77. [Google Scholar]
- Goyal, D.; Pabla, B. Condition based maintenance of machine tools—A review. CIRP J. Manuf. Sci. Technol.
**2015**, 10, 24–35. [Google Scholar] [CrossRef] - Pham, H.T.; Yang, B.S.; Tran, V.T.; Yang, B.-S. A hybrid of nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting. Expert Syst. Appl.
**2010**, 37, 3310–3317. [Google Scholar] [CrossRef] [Green Version] - Khelif, R.; Chebel-Morello, B.; Malinowski, S.; Laajili, E.; Fnaiech, F.; Zerhouni, N. Direct remaining useful life estimation based on support vector regression. IEEE Trans. Ind. Electron.
**2017**, 64, 2276–2285. [Google Scholar] [CrossRef] - Djeziri, M.; Ananou, B.; Ouladsine, M.; Pinaton, J.; Nguyen, T.-B.-L. Fault prognosis for discrete manufacturing processes. IFAC Proc. Vol.
**2014**, 47, 8066–8072. [Google Scholar] - Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem.
**1964**, 36, 1627–1639. [Google Scholar] [CrossRef] - Extrapolation, I. Smoothing of Stationary Time Series; Martino Fine Books: New York, NY, USA, 1949. [Google Scholar]
- Hejazi, M.; Singh, Y.P. One-class support vector machines approach to anomaly detection. Appl. Artif. Intell.
**2013**, 27, 351–366. [Google Scholar] [CrossRef] - Cortadi, A.J.; Boto, F.; Irigoien, I.; Sierra, B.; Suarez, A. Instability Detection on a Radial Turning Process for Superalloys. In Proceedings of the International Joint Conference SOCO17-CISIS17-ICEUTE17, León, Spain, 6–8 September 2017; pp. 247–255. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Breiman, L. Arcing the Edge; Technical Report 486; Statistics Department, University of California: Berkeley, CA, USA, 1997. [Google Scholar]
- Prinzie, A.; Van den Poel, D. Random multiclass classification: Generalizing random forests to random mnl and random nb. In Proceedings of the International Conference on Database and Expert Systems Applications, Regensburg, Germany, 3–7 September 2007; pp. 349–358. [Google Scholar]
- Connor, J.; Atlas, L. Recurrent neural networks and time series prediction. In Proceedings of the IJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, WA, USA, 8–12 July 1991; Volume 1, pp. 301–306. [Google Scholar]

**Figure 5.**Application integrated at the machine showing the Remaining Useful Life (RUL) for the actual working tool.

**Table 1.**Mean MSE values for each method for each different number of test pieces (multiplied by ${10}^{-3}$). GB, Gradient Boosting.

Test Pieces | ARIMA | GB | RF | RNN |
---|---|---|---|---|

10 | 3.668 | 3.832 | 4.050 | 4.256 |

20 | 2.832 | 3.227 | 2.891 | 3.524 |

30 | 3.166 | 3.833 | 3.325 | 3.885 |

40 | 3.909 | 3.489 | 3.121 | 3.756 |

50 | 3.791 | 3.899 | 4.065 | 4.002 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jimenez-Cortadi, A.; Irigoien, I.; Boto, F.; Sierra, B.; Rodriguez, G.
Predictive Maintenance on the Machining Process and Machine Tool. *Appl. Sci.* **2020**, *10*, 224.
https://doi.org/10.3390/app10010224

**AMA Style**

Jimenez-Cortadi A, Irigoien I, Boto F, Sierra B, Rodriguez G.
Predictive Maintenance on the Machining Process and Machine Tool. *Applied Sciences*. 2020; 10(1):224.
https://doi.org/10.3390/app10010224

**Chicago/Turabian Style**

Jimenez-Cortadi, Alberto, Itziar Irigoien, Fernando Boto, Basilio Sierra, and German Rodriguez.
2020. "Predictive Maintenance on the Machining Process and Machine Tool" *Applied Sciences* 10, no. 1: 224.
https://doi.org/10.3390/app10010224