A Nested Ensemble Filtering Approach for Parameter Estimation and Uncertainty Quantification of Traffic Noise Models
Abstract
:1. Introduction
2. Methodology
2.1. Ensemble Kalman Filter
2.2. Particle Filter
2.3. The Nested Ensemble Filtering Approach for Parameter Estimation and Uncertainty Quantification
- Model state initialization: Initialize Nx-dimensional model state variables for ne samples: xt,i, i = 1, 2, …, ne, .
- Parameter sampling: Sample Nθ-dimensional model parameters for ne samples:θt,i, i = 1, 2, …, ne, .
- Sample weight assignment: Assign the particle weights uniformly:wt,i = 1/ne.
- Model state forecast step: Propagate the ne state variables and model parameters forward in time using model operator f
- Observation simulation: Use the observation operator h to propagate the model state forecast:
- Parameters and states updating: Update the parameters and states via the EnKF updating equations
- Estimate the likelihood:
- Obtain the updated weight for the analyzed ensemble values:
- Resampling: Apply the resampling procedure proposed by Moradkhani et al. [28] to eliminate the abnormal samples and replace the analyzed and .
- Parameter perturbation: Take parameter evolution to the next stage by adding small stochastic error around the sample:
- Check the stopping criterion: If measurement data are still available in the next stage, t = t + 1, return to Step 3. Otherwise, stop.
3. Applications
3.1. Statement of Problem
3.2. Traffic Noise Emission Model
4. Results Analysis and Discussion
4.1. Parameter Estimation and Uncertainty Quantification of Traffic Noise Prediction Model at Scenario A1
4.2. Parameter Estimation and Uncertainty Quantification of Traffic Noise Prediction Model at Scenario A2
4.3. Parameter Estimation and Uncertainty Quantification of Traffic Noise Prediction Model at Scenario B
4.4. Parameter Estimation and Uncertainty Quantification of Traffic Noise Prediction Model at Scenario C
5. Conclusions
- (1)
- A nested ensemble filtering (NEF) approach has been advanced for parameter estimation and the uncertainty quantification of traffic noise prediction. This improves upon the ensemble Kalman filter (EnKF) method by incorporating the sample importance resampling (SIR) procedures into the EnKF update process. Compared with the EnKF method, the proposed NEF approach can avoid the overshooting problem (abnormal value (e.g., outside the predefined ranges, complex values) in parameter or state samples) existing in the EnKF update process.
- (2)
- The proposed NEF approach was applied to traffic noise prediction on the Trans-Canada Highway in City of Regina. The traffic noise model is incorporated into the proposed NEF approach to quantify the parameter uncertainties in the traffic noise prediction model. Such a process is implemented using Matlab. Four scenarios at three observation sites were designed to evaluate the performance of the NEF approach in estimating unknown parameters and quantifying the uncertainty of the empirical traffic noise prediction model. Both new (scenarios A2 and B) and old (scenarios A1 and C) pavement condition were considered. The results demonstrate the applicability of the proposed methodology.
- (3)
- Comparisons between the nested ensemble filtering approach and maximum likelihood estimation (MLE) method have been undertaken. It is indicated that: (a) the NEF method performed better than MLE in most conditions, (b) the model parameters can be recursively corrected whenever new measurement is available, and (c) the uncertainty in the traffic noise model can be reduced well and quantified through the proposed NEF approach.
- (4)
- This study is a new attempt to improve upon the ensemble Kalman filter. Only the empirical traffic noise prediction model was applied to demonstrate the applicability of the proposed NEF method. It is desired that more real-world models (e.g., FHWA traffic noise model) will be undertaken to demonstrate the practical applicability of the proposed NEF method.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lercher, P.; Evans, G.W.; Meis, M. Ambient noise and cognitive processes among primary schoolchildren. Environ. Behav. 2003, 35, 725–735. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Sygna, K.; Aasvang, G.M.; Aamodt, G.; Oftedal, B.; Krog, N.H. Road traffic noise, sleep and mental health. Environ. Res. 2014, 131, 17–24. [Google Scholar] [CrossRef]
- Vienneau, D.; Schindler, C.; Perez, L.; Probst-Hensch, N.; Röösli, M. The relationship between transportation noise exposure and ischemic heart disease: A meta-analysis. Environ. Res. 2015, 138, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Minichilli, F.; Gorini, F.; Ascari, E.; Bianchi, F.; Coi, A.; Fredianelli, L.; Licitra, G.; Manzoli, F.; Mezzasalma, L.; Cori, L. Annoyance Judgment and Measurements of Environmental Noise: A Focus on Italian Secondary Schools. Int. J. Environ. Res. Public Health 2018, 15, 208. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Dai, L.M.; Fan, Y.R. Characterization of noise reduction capabilities of porous materials under various vacuum conditions. Appl. Acoust. 2020, 161, 107155. [Google Scholar] [CrossRef]
- Miedema, H.M.E.; Oudshoorn, C.G.M. Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals. Environ. Health Perspect. 2001, 109, 409–416. [Google Scholar] [CrossRef]
- Abo-Qudais, S.; Alhiary, A. Statistical models for traffic noise at signalized intersections. Build. Environ. 2007, 42, 2939–2948. [Google Scholar] [CrossRef]
- Licitra, G.; Ascari, E.; Brambilla, G. Comparative analysis of methods to estimate urban noise exposure of inhabitants. Acta Acust. United Acust. 2012, 98, 659–666. [Google Scholar] [CrossRef]
- Licitra, G.; Fredianelli, L.; Petri, D.; Vigotti, M.A. Annoyance evaluation due to overall railway noise and vibration in Pisa urban areas. Sci. Total Environ. 2016, 568, 1315–1325. [Google Scholar] [CrossRef]
- Licitra, G.; Teti, L.; Cerchiai, M.; Bianco, F. The influence of tyres on the use of the CPX method for evaluating the effectiveness of a noise mitigation action based on low-noise road surfaces. Transp. Res. Part D Transp. Environ. 2017, 55, 217–226. [Google Scholar] [CrossRef]
- Praticò, F.G.; Fabienne, A.L. Trends and issues in mitigating traffic noise through quiet pavements. Procedia Soc. Behav. Sci. 2012, 53, 203–212. [Google Scholar] [CrossRef]
- Praticò, F.G. On the dependence of acoustic performance on pavement characteristics. Transp. Res. Part D Transp. Environ. 2014, 29, 79–87. [Google Scholar] [CrossRef]
- Licitra, G.; Cerchiai, M.; Teti, L.; Ascari, E.; Bianco, F.; Chetoni, M. Performance assessment of low-noise road surfaces in the leopoldo project: Comparison and validation of different measurement methods. Coatings 2015, 5, 3–25. [Google Scholar] [CrossRef]
- Licitra, G.; Moro, A.; Teti, L.; Del Pizzo, A.; Bianco, F. Modelling of acoustic ageing of rubberized pavements. Appl. Acoust. 2019, 146, 237–245. [Google Scholar] [CrossRef]
- Del Pizzo, A.; Teti, L.; Moro, A.; Bianco, F.; Fredianelli, L.; Licitra, G. Influence of texture on tyre road noise spectra in rubberized pavements. Appl. Acoust. 2020, 159, 107080. [Google Scholar] [CrossRef]
- Steele, C. A critical review of some traffic noise prediction models. Appl. Acoust. 2001, 62, 271–287. [Google Scholar] [CrossRef]
- Huang, K.; Dai, L.M.; Huang, W. Effects of Road Age and Traffic Flow on the Traffic Noise of the Highways in an Urban Area. J. Environ. Inform. 2014, 24, 121–130. [Google Scholar] [CrossRef]
- Peng, W.; Mayorga, R.V. Assessing traffic noise impact based on probabilistic and fuzzy approaches under uncertainty. Stoch. Environ. Res. Risk Assess. 2008, 22, 541–550. [Google Scholar] [CrossRef]
- Gimenez, A.; Gonzalez, M. A stochastic model for the noise level. J. Acoust. Soc. Am. 2009, 125, 3030–3037. [Google Scholar] [CrossRef]
- Ramirez, A.; Dominguez, E. Modeling urban traffic noise with stochastic and deterministic traffic models. Appl. Acoust. 2013, 74, 617–621. [Google Scholar]
- Iannone, G.; Guarnaccia, C.; Quartieri, J. Speed distribution influence in road traffic noise prediction. Environ. Eng. Manag. J. 2013, 12, 493–501. [Google Scholar] [CrossRef]
- Huang, K.; Dai, L.M.; Yao, M.; Fan, Y.R.; Kong, X.M. Modelling Dependence between Traffic Noise and Traffic Flow through An Entropy-Copula Method. J. Environ. Inform. 2017, 29, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Huang, K. Analysis of Impact Factors for Traffic Noise in Urban Areas. Ph.D. Thesis, Faculty of Graduate Studies and Research, University of Regina, Regina, SK, Canada, 2014. [Google Scholar]
- Plaze Guingla, D.A.; De Keyser, R.; De Lannoy, G.J.M.; Giustarini, L.; Matgen, P.; Pauwels, V.R.N. Improving particle filters in rainfall-runoff models: Application of the resample-move step and the ensemble Gaussian particle filter. Water Resour. Res. 2013, 49, 1–17. [Google Scholar] [CrossRef]
- Weerts, A.H.; EISerafy, G.Y.H. Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall-runoff models. Water Resour. Res. 2006, 42, W09403. [Google Scholar] [CrossRef] [Green Version]
- DeChant, C.M.; Moradkhani, H. Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resour. Res. 2012, 48, W04518. [Google Scholar] [CrossRef] [Green Version]
- Moradkhani, H.; Hsu, K.-L.; Gupta, H.; Sorooshian, S. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resour. Res. 2005, 41, W05012. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.R.; Huang, G.H.; Baetz, B.W.; Li, Y.P.; Huang, K.; Chen, X.; Gao, M. Development of integrated approaches for hydrological data assimilation through combination of ensemble Kalman filter and particle filter methods. J. Hydrol. 2017, 550, 412–426. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.R.; Huang, G.H.; Baetz, B.W.; Li, Y.P.; Huang, K. Development of a copula-based particle filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resour. Res. 2017, 53, 4850–4875. [Google Scholar] [CrossRef] [Green Version]
- Saskatchewan Highways. Feature: East Regina TCH, Archived from the Original on 25 November 2006. Available online: https://web.archive.org/web/20061125064726/http://www.saskhighways.homestead.com/regina_TCH.html (accessed on 21 September 2006).
- Bérengier, M. Acoustical impact of traffic flowing equipments in urban areas. In Proceedings of Forum Acusticum; European Acoustical Association: Sevilla, Spain, 2002. [Google Scholar]
- Pierre, R.L.S., Jr.; Maguire, D.J. The impact of A-weighting sound pressure level measurements during the evaluation of noise exposure. In Proceedings of the Conference NOISE-CON, Baltimore, MD, USA, 12–14 July 2004; pp. 12–14. [Google Scholar]
- Harrison, M. Vehicle Refinement: Controlling Noise and Vibration in Road Vehicles, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Pallas, M.A.; Lelong, J.; Chatagnon, R. Characterisation of tram noise emission and contribution of the noise sources. Appl. Acoust. 2011, 72, 437–450. [Google Scholar] [CrossRef]
- Faure, B.; Chiello, O.; Pallas, M.A.; Serviere, C. Characterisation of the acoustic field radiated by a rail with a microphone array: The SWEAM method. J. Sound Vib. 2015, 346, 165–190. [Google Scholar] [CrossRef]
- Pallas, M.A.; Berengier, M.; Chatagnon, R.; Czuka, M.; Conter, M.; Muirhead, M. Towards a model for electric vehicle noise emission in the European prediction method CNOSSOS-EU. Appl. Acoust. 2016, 113, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.P.; Rao, S.M.G. Environmental noise levels due to motor vehicular traffic in Visakhapatnam city. Acustica 1991, 74, 291–295. [Google Scholar]
- Singal, S.P. Noise Pollution and Control Strategy; Narosa Publication House: New Delhi, India, 2005. [Google Scholar]
- Agarwal, S.; Swami, B.L. Comprehensive approach for the development of traffic noise prediction model for Jaipur city. Environ. Monit. Assess. 2011, 172, 113–120. [Google Scholar] [CrossRef] [PubMed]
Site | A | B | ||||||
---|---|---|---|---|---|---|---|---|
Initial | Final | Mean | MLE a | Initial | Final | Mean | MLE | |
A1 | [0.1, 20] | [11.5, 12.2] | 11.9 | 12.1 | [−10, 30] | −7.1 | −7.1 | −9.5 |
A2 | [0.1, 20] | [6.7, 7.2] | 7.0 | 5.1 | [−20, 50] | [10.5, 11.4] | 10.8 | 23.4 |
B | [0.1, 20] | [4.5, 4.9] | 4.7 | 5.2 | [−20, 50] | [26.8, 30.4] | 28.7 | 26.8 |
C | [0.1, 20] | [6.5, 6.8] | 6.6 | 9.2 | [−20, 50] | [26.9, 28.3] | 27.6 | 10.1 |
Site | R2 | |
---|---|---|
NEF | MLE | |
A1 | 0.9025 | 0.9025 |
A2 | 0.7649 | 0.7639 |
B | 0.7691 | 0.7699 |
C | 0.8183 | 0.7646 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Fan, Y.; Dai, L. A Nested Ensemble Filtering Approach for Parameter Estimation and Uncertainty Quantification of Traffic Noise Models. Appl. Sci. 2020, 10, 204. https://doi.org/10.3390/app10010204
Huang K, Fan Y, Dai L. A Nested Ensemble Filtering Approach for Parameter Estimation and Uncertainty Quantification of Traffic Noise Models. Applied Sciences. 2020; 10(1):204. https://doi.org/10.3390/app10010204
Chicago/Turabian StyleHuang, Kai, Yurui Fan, and Liming Dai. 2020. "A Nested Ensemble Filtering Approach for Parameter Estimation and Uncertainty Quantification of Traffic Noise Models" Applied Sciences 10, no. 1: 204. https://doi.org/10.3390/app10010204
APA StyleHuang, K., Fan, Y., & Dai, L. (2020). A Nested Ensemble Filtering Approach for Parameter Estimation and Uncertainty Quantification of Traffic Noise Models. Applied Sciences, 10(1), 204. https://doi.org/10.3390/app10010204