The Emerging Technology in Hiring: Insights from Assembly Line Workers and Managers
Abstract
1. Introduction and Background
2. Management Consultancy and Client Company
3. Literature Review on AI-Empowered Hiring
4. Method for the Model Development
4.1. Architecture of the Model
4.2. Source of the Data
4.3. Establishment of the Model and Pattern Building
4.4. Cross-Validation, External Testing and Quality Control
5. The Application of the Model
6. Discussion and Conclusions
6.1. Contribution to the Literature
6.2. Practical Implications
6.3. Limitation and Suggestions
6.4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albert, E. T. (2019). AI in talent acquisition: A review of AI-applications used in recruitment and selection. Strategic HR Review, 18(5), 215–221. [Google Scholar] [CrossRef]
- Ali, M. M., Chang, K., & Vaduva, A. (2023). Does AI bring more benefits or threats to the workplace. Business Time, 30, 66–67. [Google Scholar]
- Ashraf, B. N., & Goodell, J. W. (2022). COVID-19 social distancing measures and economic growth: Distinguishing short- and long-term effects. Finance Research Letters, 47, 102639. [Google Scholar] [CrossRef] [PubMed]
- Baroroh, D. K., Chu, C. H., & Wang, L. (2021). Systematic literature review on augmented reality in smart manufacturing: Collaboration between human and artificial intelligence. Journal of Manufacturing Systems, 61, 696–711. [Google Scholar] [CrossRef]
- Bian, S., Li, C., Fu, Y., Ren, Y., Wu, T., Li, G. P., & Li, B. (2021). Machine learning-based real-time monitoring system for smart connected worker to improve energy efficiency. Journal of Manufacturing Systems, 61, 66–76. [Google Scholar] [CrossRef]
- Bonaccorso, G. (2018). Mastering machine learning algorithms: Expert techniques to implement popular machine learning algorithms and fine-tune your models. Packt Publishing. [Google Scholar]
- Campbell, D. P., & Borgen, F. H. (1999). Holland’s theory and the development of interest inventories. Journal of Vocational Behavior, 55(1), 86–101. [Google Scholar] [CrossRef]
- Cattell, H. E., & Schuerger, J. M. (2003). Essentials of the 16PF. John Wiley & Sons. [Google Scholar]
- Cattell, R. B. (1995). The fallacy of five factors in the personality sphere. The Psychologist, 8(5), 207–208. [Google Scholar]
- Chang, K. (2024). Ethical and operational challenges in AI-empowered employee recruitment: Insights and suggestions to the managers and managerial practitioners. Innovations in Business and Strategic Management, 2(1), 29–32. [Google Scholar] [CrossRef]
- Chang, K., Carrim, N. M. H., Gupta, M., Cheng, K. T., & Sandland, S. (2024a). Digitalization of personnel recruitment and selection. In T. A. Adisa (Ed.), HRM 5.0: Unpacking the digitalisation of human resource management (pp. 87–111). Chapter Five. Palgrave Macmillan. [Google Scholar]
- Chang, K., Cheng, K. T., & Sandland, S. (2024b). Artificial intelligence in people management—A critical review. In T. A. Adisa (Ed.), HRM 5.0: Unpacking the digitalisation of human resource management (pp. 35–56). Chapter Three. Palgrave Macmillan. [Google Scholar]
- Cheng, K. T., Chang, K., & Tai, H. W. (2022). AI boosts performance but affects employees’ emotion. Information Resources Management Journal, 35(1), 1–18. [Google Scholar] [CrossRef]
- Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899. [Google Scholar] [CrossRef]
- Corominas, A., Pastor, R., & Plans, J. (2008). Balancing assembly line with skilled and unskilled workers. Omega, 36(6), 1126–1132. [Google Scholar] [CrossRef]
- Engelbrecht, A. P. (2007). Artificial intelligence: An introduction (2nd ed.). Wiley. [Google Scholar]
- Ernst & Young LLP. (2018). The new age: Artificial intelligence for human resource opportunities and functions. Ernst & Young LLP. [Google Scholar]
- Fazio, R. H., Ruisch, B. C., Moore, C. A., Granados Samayoa, J. A., Boggs, S. T., & Ladanyi, J. T. (2021). Social distancing decreases an individual’s likelihood of contracting COVID-19. Psychological and Cognitive Sciences, 118(8), e2023131118. [Google Scholar] [CrossRef] [PubMed]
- Fraij, J., & László, V. (2021). A literature review: Artificial intelligence impact on the recruitment process. International Journal of Engineering and Management Sciences, 6(1), 108–119. [Google Scholar] [CrossRef]
- Gonzales, M. F., Capman, J. F., Oswald, F. L., Theys, E. R., & Tomczak, D. L. (2019). Where’s the I-O? Artificial intelligence and machine learning in talent management systems. Personnel Assessment and Decision, 5(3), 33–44. [Google Scholar] [CrossRef]
- Guedhami, O., Knill, A., Megginson, W. L., & Senbet, L. W. (2022). The dark side of globalization: Evidence from the impact of COVID-19 on multinational companies. Journal of International Business Studies, 53(1), 1603–1640. [Google Scholar] [CrossRef]
- He, J., van De Vijver, F. J., Dominguez Espinosa, A., Abubakar, A., Dimitrova, R., Adams, B. G., Aydinli, A., Atitsogbe, K., Alonso-Arbiol, I., Bobowik, M., & Fischer, R. (2014). Socially desirable responding: Enhancement and denial in 20 Countries. Cross-Culture Research, 49(3), 227–249. [Google Scholar] [CrossRef]
- Hunkenschroer, A. L., & Kriebitz, A. (2023). Is AI recruiting (un)ethical? A human rights perspective on the use of AI for hiring. AI & Ethics, 3, 199–213. [Google Scholar]
- Inman, R. R., Jordan, W. C., & Blumenfeld, W. C. (2004). Chained cross-training of assembly line workers. International Journal of Production Research, 42(10), 189901910. [Google Scholar] [CrossRef]
- Johansson, J., & Herranen, S. (2019). The application of artificial intelligence (AI) in human resource management: Current state of AI and its impact on the traditional recruitment process. Available online: https://www.diva-portal.org/smash/get/diva2:1322478/FULLTEXT01.pdf (accessed on 17 September 2024).
- Katiraee, N., Calzavara, M., Finco, S., Battaïa, O., & Battini, D. (2023). Assembly line balancing and worker assignment considering workers’ expertise and perceived physical effort. International Journal of Production Research, 61(20), 6939–6959. [Google Scholar] [CrossRef]
- Khan, L. U., Saad, W., Han, Z., Hossain, E., & Hong, C. S. (2021). Federated learning for internet of things: Recent advances, taxonomy, and open challenges. IEEE Communications Surveys & Tutorials, 23(3), 1759–1799. [Google Scholar] [CrossRef]
- Kot, S., Hussain, H. I., Bilan, S., Haseeb, M., & Mihardjo, L. W. (2021). The role of artificial intelligence recruitment and quality to explain the phenomenon of employer reputation. Journal of Business Economics and Management, 22(4), 867–883. [Google Scholar] [CrossRef]
- Krumpal, I. (2013). Determinants of social desirability bias in sensitive surveys: A literature review. Quality & Quantity, 47(4), 2025–2047. [Google Scholar]
- Li, W., & Pye, L. W. (1992). The ubiquitous role of the Mishu in Chinese politics. The China Quarterly, 132(12), 913–936. [Google Scholar] [CrossRef]
- Loia, V., Orciuoli, F., & Gaeta, A. (2023). Computational techniques for intelligence analysis: A cognitive approach. Springer. [Google Scholar]
- McKinsey. (2022). Bolder recruitment efforts can benefit organizations. People & Organization Blog. Available online: https://www.mckinsey.com/capabilities/people-and-organizational-performance/our-insights/the-organization-blog/your-office-needs-a-purpose (accessed on 17 September 2024).
- Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning: Algorithms and applications. CRC Press. [Google Scholar]
- Mujtaba, D. F., & Mahapatra, N. R. (2019, November 15–16). Ethical considerations in AI-based recruitment. 2019 IEEE International Symposium on Technology and Society (ISTAS) (pp. 1–7), Medford, MA, USA. [Google Scholar]
- Muniz, J., Jr., Wintersberger, D., & Hong, J. L. F. (2022). Worker and manager judgments about factors that facilitate knowledge-sharing: Insights from a Brazilian automotive assembly line. Knowledge and Process Management, 29(2), 132–146. [Google Scholar] [CrossRef]
- Nauta, M. M. (2010). The development, evolution, and status of Holland’s theory of vocational personalities: Reflections and future directions for counseling psychology. Journal of Counseling Psychology, 57(1), 11–22. [Google Scholar] [CrossRef]
- Ore, O., & Sposato, M. (2022). Opportunities and risks of artificial intelligence in recruitment and selection. International Journal of Organizational Analysis, 30(6), 1771–1782. [Google Scholar] [CrossRef]
- Pabolu, V. K. R., Shrivastava, D., & Kulkarni, M. S. (2025). Development of intelligent system to consider worker’s comfortable work duration in assembly line work scheduling. Journal of Manufacturing Systems, 78, 226–243. [Google Scholar] [CrossRef]
- Pan, Y., Froese, F., Liu, N., Hu, Y. Y., & Ye, M. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. International Journal of Human Resource Management, 33(6), 1125–1147. [Google Scholar] [CrossRef]
- PwC. (2022). The economic impact of artificial intelligence on the UK economy. PwC Report. Available online: https://www.pwc.co.uk/economic-services/assets/ai-uk-report-v2.pdf (accessed on 17 September 2024).
- Roman-Gonzalez, M., Perez-Gonzalez, J. C., Moreno-Leon, J., & Robles, G. (2018). Can computational talent be detected? Predictive validity of the computational thinking test. International Journal of Child-Computer Interaction, 18(2018), 47–58. [Google Scholar] [CrossRef]
- Sddique, N., & Adeli, H. (2013). Artificial intelligence: Synergies of fuzzy logic, neural networks and evolutionary computing. John Wiley & Sons. [Google Scholar]
- Taylor, S., & Woodhams, C. (2022). Human resource management: People and organisations. Kogan Page. [Google Scholar]
- Troisi, O., Visvizi, A., & Grimaldi, M. (2024). Rethinking innovation through industry and society 5.0 paradigms: A multileveled approach for management and policy-making. European Journal of Innovation Management, 27(9), 22–51. [Google Scholar] [CrossRef]
- Van Esch, P., Black, J. S., & Ferolie, J. (2019). Marketing AI recruitment: The next phase in job application and selection. Computers in Human Behavior, 90(1), 215–222. [Google Scholar] [CrossRef]
- Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). AI robotics, advanced technologies and human resource management: A systematic review. International Journal of Human Resource Management, 3(6), 1237–1266. [Google Scholar] [CrossRef]
- Wang, A. M., Wang, T. L., & Huang, C. J. (2017). BigData on human resource management: Model, theory and application. Tsinghua University Press. [Google Scholar]
- Whiting, F., & Martin, M. (2020). Human resource practice. Kogan Page. [Google Scholar]
- Zeb, S., Mahmood, A., Hassan, S. A., Piran, M. J., Gidlund, M., & Guizani, M. (2022). Industrial digital twins at the nexus of NextG wireless networks and computational intelligence: A survey. Journal of Network and Computer Applications, 200, 103309. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, K.; Cheng, K.-T. The Emerging Technology in Hiring: Insights from Assembly Line Workers and Managers. Adm. Sci. 2025, 15, 463. https://doi.org/10.3390/admsci15120463
Chang K, Cheng K-T. The Emerging Technology in Hiring: Insights from Assembly Line Workers and Managers. Administrative Sciences. 2025; 15(12):463. https://doi.org/10.3390/admsci15120463
Chicago/Turabian StyleChang, Kirk, and Kuo-Tai Cheng. 2025. "The Emerging Technology in Hiring: Insights from Assembly Line Workers and Managers" Administrative Sciences 15, no. 12: 463. https://doi.org/10.3390/admsci15120463
APA StyleChang, K., & Cheng, K.-T. (2025). The Emerging Technology in Hiring: Insights from Assembly Line Workers and Managers. Administrative Sciences, 15(12), 463. https://doi.org/10.3390/admsci15120463

