The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets
Abstract
:1. Introduction
2. Materials and Methods: Budgets, Reduction Pathways, Scenarios—Zero Emissions until When?
3. Results: Empirically and Legally
3.1. Empirical Basis of Legal Analysis: Challenges in the Data—Time Period, Probability, Gases, Climate Sensitivity, Overshoot
- Firstly, not all budgets include non-carbon-dioxide emissions (see above). The inclusion of non-CO2 emissions in the scenario calculations has different implications, since they have individual global warming potentials (GWP; lifetime in the atmosphere and radiative efficiency). For example, a possible additional release of carbon could emerge be due to thawing of permafrost soils and consequently further reduce the remaining carbon budget [7,16] (p. 12); (for permafrost-carbon feedback on global warming see also [80,81]). Where scenarios in SR15 include non-CO2 emissions, they cover all anthropogenic emissions except those that result in radiative forcing. Non-CO2 scenarios include short-lived climate warmers such as methane (CH4), some fluorinated gases, ozone (O3) precursors, aerosols, or aerosol precursors, such as black carbon and sulfur dioxide, and long-lived GHGs, such as nitrous oxide (N2O), or other fluorinated gases [16] (p. 555). However, these variables are very complex and changes of their amount lead to changes in the overall calculation. Therefore, current scenarios make use of a fixed level of non-CO2 emissions. This led recent studies to suggest that the influence of non-CO2 emissions on the projections is currently underestimated [33,35,56,82]. However, since these GHGs do not remain in the atmosphere as long as carbon dioxide for example, they cannot be neglected when calculating the remaining budget [83,84,85].
- Secondly, the budget calculations are also strongly influenced by the choice of the base year. In setting the base year of the “pre-industrial level” (Art. 2 para. 1 PA) quite late, namely when climate change has already started, calculations become very liberal [6,86,87]. This not only leads to an underestimation of human-made global warming (IPCC data are also compiled at [48]) but also neglects the fact that—despite the lack of concrete records—there has been human-induced warming even before that time. In general, a uniform baseline is needed to be able to perform consistent calculations. The question of what the term “pre-industrial” means leads to the question of when exactly industrialisation, respectively the increase of emissions started. Although the IPCC mentions 1750 as the starting point of the industrial revolution and uses it in part as a basis year or starting point of the observed period in WG III of AR5 [5] (pp. 7, 45) [30] (pp. 11–13, 50, 56) [88], the Special Report from 2018 uses the reference period 1850–1900 without stating an exact reference year [16] (e.g., pp. 58, 81). Likewise, WG I of AR6 adopts 1850–1900 as baseline [15] (SPM-5) while also stating that since 1750, climate changing drivers have been dominated by human activities [ibid, p. TS-35]. It is reasonable to assume that in most cases 1850 is taken as the reference year since record-keeping of temperature started then. However, reliable data are limited to the Northern Hemisphere [5,30]. The increase of carbon dioxide before 1850 is estimated for a temperature rise of 0.1 to 0.2 °C Celsius [89]. “Pre-industrial level” from the legally binding Art. 2 PA points obviously and almost compellingly to 1750 as the base year because this is when the industrial revolution began in Western countries—rather than the very vague period between 1850 and 1900 [6].
- Thirdly, existing calculations seem quite liberal if compared with other assumptions on climate sensitivity. Equilibrium climate sensitivity (ECS) [83] indicates the temperature increase when CO2 equivalents in the atmosphere double. Therefore, it is an important reference for climate modelling and ultimately for determining the temperature limit of Art. 2 para. 1 PA [30]. WG I of AR5 adopts an ECS in the range of 1.5–4.5 °C, based on an analysis of energy budget changes over the historical period [90]. WGI of AR6 adopts an ECS in the range of 2.5–4 °C with a best estimate of 3 °C [15] (pp. 7–111). However, recent studies suggest that the lower bound of the ECS could be revised upward [91,92], which would reduce the chances of limiting warming below 1.5 °C [91,93,94,95,96]. For example, paleoclimatic research shows that climate sensitivity changes with the state of the climate. During warm periods, the ECS is significantly higher; 4.88 °C according to the calculations of [92] which is well above the IPCC ranges. Furthermore, WGI of AR6 presents estimations for additional human-induced warming, expressed as global surface temperature from 2010–2019 which is likely to be 0.8–1.3 °C, with a best estimate of 1.07 °C relative to 1850–1900. Historical CO2 emissions between 1850 and 2014 were estimated to be around 2180 ± 24 GtCO2, while an additional 210 GtCO2 were emitted from 2015 until the end of 2019. However, different factors contribute to the estimations varying by ±220 GtCO2 depending on the level of non-CO2 emissions at the time when global anthropogenic CO2 emissions reach net zero. Geophysical uncertainties in the climate response to these non-CO2 emissions add at least ±220 GtCO2 of uncertainty, and uncertainties in the level of historical warming may add ±550 GtCO2 [15] (TS-63).
- Fourthly, global carbon budget calculations accept a high probability of missing the temperature limit. While the IPCC assumed a probability of success of 50 or 55 percent in WG III of AR5, it has increased to up to 67 percent in SR15 [16] (pp. 100, 207). WGI of AR6 supplements its assessment with a 17 percent probability at the lower and an 83 percent probability at the upper end of its estimates [15] (TS-63). But even this increase is still not the same as the clear obligation towards the target of the Paris Agreement especially since the IPCC’s underlying assumptions also tend to be generous as seen [7,20]. Rather, net-zero emissions must be achieved promptly in no more than two decades to drastically reduce the risk of reaching critical tipping points such as further melting of the Greenland or West Antarctic ice sheets and coral bleaching [6,7,51,97].
- Fifthly, SR15 creates several pathways toward 1.5 °C warming where global emissions peak within the next decade [16] (pp. 32, 56, 126) [20,62,90,98,99,100,101]. For this purpose, the report increasingly relies on carbon dioxide removal methods, very often taking an overshoot into account as seen in bioenergy with carbon capture and storage and afforestation and reforestation [16] (pp. 118–123) despite stating that compensating an overshoot and “CDR deployed at scale (are) unproven, and reliance on such technology is a major risk in the ability to limit warming to 1.5 °C” [ibid p. 96]. In principle, WGIII of AR6 is open to the use of CDR. For pathways that aim to limit temperature rise to 1.5 °C, total cumulative net negative emissions, including the use of CDR, amount to 20–660 GtCO2 [17] (SPM-33, SPM-53). According to WGIII of AR6, pathways aiming to limit global warming to 1.5 °C require a certain level of CDR to offset remaining emissions, even if substantial direct emission reductions are achieved in all sectors and regions [17] (SPM-53). Using afforestation and reforestation is largely supported and appreciated in science and politics as a key component of climate protection strategies. However, there is strong criticism that even large-scale reforestation projects can only sequester a portion of annual emissions and that the potentials of forests are overestimated [24,102,103,104,105], (see for critiques on CDR methods [106,107,108,109,110]). Using bioenergy with carbon capture and storage is even more contested, also due to the ambivalent character of bioenergy for various environmental challenges [111,112]. Indeed, the IPCC sees limits to using bioenergy with carbon capture and storage due to energy, water, and nutrient requirements, as well as limited available safe disposal options and competing policy goals such as food security; nevertheless, the IPCC projects increased deployment of bioenergy with carbon capture and storage in the second half of the century, highlighting the potential of bioenergy deployment in several areas of the energy sector in integrated assessment models, including electricity generation, liquid fuels, biogas, and hydrogen [16] (pp. 122–124). However, studies criticise the energy required for biomass production and the loss of efficiency due to CO2 capture [113,114]. Furthermore, various ambivalences regarding other environmental challenges such as biodiversity loss as well as threats to food security must be considered [39,67,111,112]. Besides, the impact of climate change on the potential of bioenergy and renewable energy, such as hydropower generation, wind, and solar power generation need to be considered [115,116]. At last, many models relying on CDR have limited applicability and are unable to calculate pathways to meet the nationally determined contributions (NDCs) by 2030 and bring global warming below 1.5 °C by 2100 [79,117]. Another method to reduce carbon dioxide is through large-scale geoengineering such as solar radiation modification (SRM). SRM aims to alter Earth’s radiative budget to limit global warming [15] (pp. 5–99). WGI of AR6 discusses different technical large-scale interventions like SRM across multiple chapters (Chapters 4 and 5). However, the IPCC excludes SRM from its mitigation and adaptation definitions [15 Annex VII] and states that “SRM contrasts with climate mitigation because it introduces a ‘mask’ to the climate change problem by altering the Earth’s radiation budget, rather than attempting to address the root cause of the problem, which is the increase in GHGs in the atmosphere” [7] [15] (p. 4–79) [118]. Nevertheless, the other challenges of negative emission approaches discussed in the present bullet point cannot be ruled out.
3.2. Legal Arguments for a Smaller Global GHG Budget
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajamani, L.; Werksman, J. The Legal Character and Operational Relevance of the Paris Agreement’s Temperature Goal. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2018, 376, 20160458. [Google Scholar] [CrossRef] [PubMed]
- Ekardt, F.; Wieding, J.; Zorn, A. Paris Agreement, Human Rights and Climate Litigation. Legal Opinion Issued by Solarenergie-Förderverein Deutschland; Research Unit Sustainability and Climate Policy: Leipzig/Berlin, Germany, 2018. [Google Scholar]
- Intergovernmental Panel on Climate Change about. Available online: https://www.ipcc.ch/sr15/about/ (accessed on 13 January 2022).
- Ekardt, F.; Wieding, J. Rechtlicher Aussagegehalt des Paris-Abkommen—eine Analyse der einzelnen Artikel. ZfU 2016, 39, 36–57. [Google Scholar]
- Intergovernmental Panel on Climate Change (Ed.) Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Ekardt, F.; Wieding, J.; Zorn, A. Paris Agreement, Precautionary Principle and Human Rights: Zero Emissions in Two Decades? Sustainability 2018, 10, 2812. [Google Scholar] [CrossRef]
- Wieding, J.; Stubenrauch, J.; Ekardt, F. Human Rights and Precautionary Principle: Limits to Geoengineering, SRM, and IPCC Scenarios. Sustainability 2020, 12, 8858. [Google Scholar] [CrossRef]
- Ekardt, F.; Heß, F. Intertemporaler Freiheitsschutz, Existenzminimum und Gewaltenteilung nach dem BVerfG-Klima-Beschluss: Freiheitsgefährdung durch Klimawandel oder durch Klimapolitik? ZUR 2021, 579–585. Available online: www.sustainability-justice-climate.eu/files/texts/Klimaklage-ZUR.pdf (accessed on 20 August 2022).
- Ekardt, F. Sustainability. Transformation, Governance, Ethics, Law; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Ekardt, F. Economic Evaluation, Cost-Benefit Analysis, Economic Ethics. A Review with Regard to Climate Change—Figures in the Sustainability Discourse; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Habermas, J. Auch eine Geschichte der Philosophie; Suhrkamp: Berlin, Germany, 2019. [Google Scholar]
- Ma, J.; Oppong, A.; Acheampong, K.N.; Abruquah, L.A. Forecasting Renewable Energy Consumption under Zero Assumptions. Sustainability 2018, 10, 576. [Google Scholar] [CrossRef]
- Rogelj, J.; Schleussner, C.-F.; Hare, W. Getting It Right Matters: Temperature Goal Interpretations in Geoscience Research: Temperature Goal Interpretations. Geophys. Res. Lett. 2017, 44, 10662–10665. [Google Scholar] [CrossRef]
- Pfleiderer, P.; Schleussner, C.-F.; Mengel, M.; Rogelj, J. Global Mean Temperature Indicators Linked to Warming Levels Avoiding Climate Risks. Environ. Res. Lett. 2018, 13, 064015. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2021. The Physical Science Basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change—Approved Version; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2021. [Google Scholar]
- Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022. Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2022. [Google Scholar]
- Rajamani, L. The Increasing Currency and Relevance of Rights-Based Perspectives in the International Negotiations on Climate Change. J. Environ. Law 2010, 22, 391–429. [Google Scholar] [CrossRef]
- Rogelj, J.; Meinshausen, M.; Schaeffer, M.; Knutti, R.; Riahi, K. Impact of Short-Lived Non-CO 2 Mitigation on Carbon Budgets for Stabilizing Global Warming. Environ. Res. Lett. 2015, 10, 075001. [Google Scholar] [CrossRef]
- Vrontisi, Z.; Luderer, G.; Saveyn, B.; Keramidas, K.; Lara, A.R.; Baumstark, L.; Bertram, C.; de Boer, H.S.; Drouet, L.; Fragkiadakis, K.; et al. Enhancing Global Climate Policy Ambition towards a 1.5 °C Stabilization: A Short-Term Multi-Model Assessment. Environ. Res. Lett. 2018, 13, 044039. [Google Scholar] [CrossRef]
- Spangenberg, J. Scenarios and Indicators for Sustainable Development: Towards a Critical Assessment of Achievements and Challenges. Sustainability 2019, 11, 942. [Google Scholar] [CrossRef] [Green Version]
- Bossel, H. Policy Assessment and Simulation of Actor Orientation for Sustainable Development. Ecol. Econ. 2000, 35, 337–355. [Google Scholar] [CrossRef]
- Allen, P.M. Evolutionary Complex Systems and Sustainable Development. In Theory and Implementation of Economic Models for Sustainable Development; Bergh, J.C.J.M., Hofkes, M.W., Eds.; Economy & Environment; Springer: Dordrecht, The Netherlands, 1998; Volume 15, pp. 67–99. [Google Scholar]
- Spangenberg, J.H.; Neumann, W.; Klöser, H.; Wittig, S.; Uhlenhaut, T.; Mertens, M.; Günther, E.; Valentin, I.; Große Ophoff, M. False Hopes, Missed Opportunities: How Economic Models Affect the IPCC Proposals in Special Report 15 “Global Warming of 1.5 °C” (2018). An Analysis From the Scientific Advisory Board of BUND. J. Appl. Bus. Econ. 2021, 23, 49–72. [Google Scholar] [CrossRef]
- Rahmstorf, S. Die Koalitionsgespräche und das Deutsche Emissionsbudget. Available online: https://scilogs.spektrum.de/klimalounge/die-koalitionsgespraeche-und-das-deutsche-emissionsbudget/ (accessed on 4 April 2022).
- Schmidt, G. Climate Models Produce Projections, Not Probabilities. Available online: https://thebulletin.org/roundtable/the-uncertainty-in-climate-modeling/ (accessed on 4 April 2022).
- Tollefson, J. Is the 2 °C World a Fantasy? Nature 2015, 527, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Schaeffer, M.; Friedlingstein, P.; Gillett, N.P.; van Vuuren, D.P.; Riahi, K.; Allen, M.; Knutti, R. Differences between Carbon Budget Estimates Unravelled. Nat. Clim. Chang. 2016, 6, 245–252. [Google Scholar] [CrossRef]
- Hausfather, Z. Analysis: How Much ‘Carbon Budget’ Is Left to Limit Global Warming to 1.5C? Available online: https://www.carbonbrief.org/analysis-how-much-carbon-budget-is-left-to-limit-global-warming-to-1-5c (accessed on 4 April 2022).
- Intergovernmental Panel on Climate Change. Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Friedlingstein, P.; Meinshausen, M.; Arora, V.K.; Jones, C.D.; Anav, A.; Liddicoat, S.K.; Knutti, R. Uncertainties in CMIP5 Climate Projections Due to Carbon Cycle Feedbacks. J. Clim. 2014, 27, 511–526. [Google Scholar] [CrossRef]
- Jian, J.; Bailey, V.; Dorheim, K.; Konings, A.G.; Hao, D.; Shiklomanov, A.N.; Snyder, A.; Steele, M.; Teramoto, M.; Vargas, R.; et al. Historically Inconsistent Productivity and Respiration Fluxes in the Global Terrestrial Carbon Cycle. Nat. Commun. 2022, 13, 1733. [Google Scholar] [CrossRef]
- Millar, R.J.; Friedlingstein, P. The Utility of the Historical Record for Assessing the Transient Climate Response to Cumulative Emissions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160449. [Google Scholar] [CrossRef]
- MacDougall, A.H. The Transient Response to Cumulative CO2 Emissions: A Review. Curr. Clim. Chang. Rep. 2016, 2, 39–47. [Google Scholar] [CrossRef]
- Collins, W.J.; Webber, C.P.; Cox, P.M.; Huntingford, C.; Lowe, J.; Sitch, S.; Chadburn, S.E.; Comyn-Platt, E.; Harper, A.B.; Hayman, G.; et al. Increased Importance of Methane Reduction for a 1.5 Degree Target. Environ. Res. Lett. 2018, 13, 054003. [Google Scholar] [CrossRef]
- Rochedo, P.R.R.; Soares-Filho, B.; Schaeffer, R.; Viola, E.; Szklo, A.; Lucena, A.F.P.; Koberle, A.; Davis, J.L.; Rajão, R.; Rathmann, R. The Threat of Political Bargaining to Climate Mitigation in Brazil. Nat. Clim. Chang. 2018, 8, 695–698. [Google Scholar] [CrossRef]
- Edelenbosch, O.Y.; McCollum, D.L.; van Vuuren, D.P.; Bertram, C.; Carrara, S.; Daly, H.; Fujimori, S.; Kitous, A.; Kyle, P.; Broin, E.Ó.; et al. Decomposing Passenger Transport Futures: Comparing Results of Global Integrated Assessment Models. Transp. Res. Part D Transp. Environ. 2017, 55, 281–293. [Google Scholar] [CrossRef]
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S.; et al. A Low Energy Demand Scenario for Meeting the 1.5 °C Target and Sustainable Development Goals without Negative Emission Technologies. Nat. Energy 2018, 3, 515–527. [Google Scholar] [CrossRef]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The Meaning of Net Zero and How to Get It Right. Nat. Clim. Chang. 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2015. [Google Scholar]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP Greenhouse Gas Concentrations and Their Extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef]
- Matthews, H.D.; Landry, J.-S.; Partanen, A.-I.; Allen, M.; Eby, M.; Forster, P.M.; Friedlingstein, P.; Zickfeld, K. Estimating Carbon Budgets for Ambitious Climate Targets. Curr. Clim. Chang. Rep. 2017, 3, 69–77. [Google Scholar] [CrossRef]
- Stocker, T. (Ed.) Technical Summary. In Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 33–115. [Google Scholar]
- Intergovernmental Panel on Climate Change. Assessing Transformation Pathways. In Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: New York, NY, USA, 2014; Chapter 6; pp. 413–510. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022. Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2022. [Google Scholar]
- Lahn, B. A History of the Global Carbon Budget. WIREs Clim. Chang. 2020, 11, e636. [Google Scholar] [CrossRef]
- Rogelj, J.; Forster, P.M.; Kriegler, E.; Smith, C.J.; Séférian, R. Estimating and Tracking the Remaining Carbon Budget for Stringent Climate Targets. Nature 2019, 571, 335–342. [Google Scholar] [CrossRef]
- CarbonBrief Analysis: Only Five Years Left before 1.5C Carbon Budget Is Blown. Available online: https://www.carbonbrief.org/analysis-only-five-years-left-before-one-point-five-c-budget-is-blown (accessed on 4 April 2022).
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Frank, S.; Humpenöder, F.; Bertram, C.; Després, J.; Drouet, L.; Emmerling, J.; Gusti, M.; Harmsen, M.; et al. Land-Based Implications of Early Climate Actions without Global Net-Negative Emissions. Nat. Sustain. 2021, 4, 1052–1059. [Google Scholar] [CrossRef]
- Mendez, A.; Farazmand, M. Investigating Climate Tipping Points under Various Emission Reduction and Carbon Capture Scenarios with a Stochastic Climate Model. Proc. R. Soc. A Math. Phys. Eng. Sci. 2021, 477, 20210697. [Google Scholar] [CrossRef]
- Tachiiri, K.; Silva Herran, D.; Su, X.; Kawamiya, M. Effect on the Earth System of Realizing a 1.5 °C Warming Climate Target after Overshooting to the 2 °C Level. Environ. Res. Lett. 2019, 14, 124063. [Google Scholar] [CrossRef]
- Palter, J.B.; Frölicher, T.L.; Paynter, D.; John, J.G. Climate, Ocean Circulation, and Sea Level Changes under Stabilization and Overshoot Pathways to 1.5 K Warming. Earth Syst. Dynam. 2018, 9, 817–828. [Google Scholar] [CrossRef]
- Drouet, L.; Bosetti, V.; Padoan, S.A.; Aleluia Reis, L.; Bertram, C.; Dalla Longa, F.; Després, J.; Emmerling, J.; Fosse, F.; Fragkiadakis, K.; et al. Net Zero-Emission Pathways Reduce the Physical and Economic Risks of Climate Change. Nat. Clim. Chang. 2021, 11, 1070–1076. [Google Scholar] [CrossRef]
- Riahi, K.; Bertram, C.; Huppmann, D.; Rogelj, J.; Bosetti, V.; Cabardos, A.-M.; Deppermann, A.; Drouet, L.; Frank, S.; Fricko, O.; et al. Cost and Attainability of Meeting Stringent Climate Targets without Overshoot. Nat. Clim. Chang. 2021, 11, 1063–1069. [Google Scholar] [CrossRef]
- Kriegler, E.; Luderer, G.; Bauer, N.; Baumstark, L.; Fujimori, S.; Popp, A.; Rogelj, J.; Strefler, J.; van Vuuren, D.P. Pathways Limiting Warming to 1.5°C: A Tale of Turning around in No Time? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20160457. [Google Scholar] [CrossRef]
- Mauritsen, T.; Pincus, R. Committed Warming Inferred from Observations. Nat. Clim. Chang. 2017, 7, 652–655. [Google Scholar] [CrossRef]
- Cheng, L.; Abraham, J.; Hausfather, Z.; Trenberth, K.E. How Fast Are the Oceans Warming? Science 2019, 363, 128–129. [Google Scholar] [CrossRef]
- Johnson, G.C.; Lyman, J.M. Warming Trends Increasingly Dominate Global Ocean. Nat. Clim. Chang. 2020, 10, 757–761. [Google Scholar] [CrossRef]
- Nicholson, S.-A.; Whitt, D.B.; Fer, I.; du Plessis, M.D.; Lebéhot, A.D.; Swart, S.; Sutton, A.J.; Monteiro, P.M.S. Storms Drive Outgassing of CO2 in the Subpolar Southern Ocean. Nat. Commun. 2022, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Drouet, L.; Emmerling, J. Climate Policy under Socio-Economic Scenario Uncertainty. Environ. Model. Softw. 2016, 79, 334–342. [Google Scholar] [CrossRef]
- Rose, S.K.; Richels, R.; Blanford, G.; Rutherford, T. The Paris Agreement and next Steps in Limiting Global Warming. Clim. Chang. 2017, 142, 255–270. [Google Scholar] [CrossRef]
- Cifci, E.; Oliver, M.E. Reassessing the Links between GHG Emissions, Economic Growth, and the UNFCCC: A Difference-in-Differences Approach. Sustainability 2018, 10, 334. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Fujimori, S.; Takahashi, K.; Hasegawa, T.; Su, X.; Masui, T. Socioeconomic Factors and Future Challenges of the Goal of Limiting the Increase in Global Average Temperature to 1.5 °C. Carbon Manag. 2018, 9, 447–457. [Google Scholar] [CrossRef]
- Woodard, D.L.; Davis, S.J.; Randerson, J.T. Economic Carbon Cycle Feedbacks May Offset Additional Warming from Natural Feedbacks. Proc. Natl. Acad. Sci. USA 2019, 116, 759–764. [Google Scholar] [CrossRef]
- Akimoto, K.; Sano, F.; Tomoda, T. GHG Emission Pathways until 2300 for the 1.5 °C Temperature Rise Target and the Mitigation Costs Achieving the Pathways. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 839–852. [Google Scholar] [CrossRef]
- Luderer, G.; Pietzcker, R.C.; Bertram, C.; Kriegler, E.; Meinshausen, M.; Edenhofer, O. Economic Mitigation Challenges: How Further Delay Closes the Door for Achieving Climate Targets. Environ. Res. Lett. 2013, 8, 034033. [Google Scholar] [CrossRef]
- Sanderson, B.M.; O’Neill, B.C.; Tebaldi, C. What Would It Take to Achieve the Paris Temperature Targets?: ACHIEVING THE PARIS TEMPERATURE TARGETS. Geophys. Res. Lett. 2016, 43, 7133–7142. [Google Scholar] [CrossRef]
- Rogelj, J.; Luderer, G.; Pietzcker, R.C.; Kriegler, E.; Schaeffer, M.; Krey, V.; Riahi, K. Energy System Transformations for Limiting End-of-Century Warming to below 1.5 °C. Nat. Clim. Chang. 2015, 5, 519–527. [Google Scholar] [CrossRef]
- Bauer, N.; Rose, S.K.; Fujimori, S.; van Vuuren, D.P.; Weyant, J.; Wise, M.; Cui, Y.; Daioglou, V.; Gidden, M.J.; Kato, E.; et al. Global Energy Sector Emission Reductions and Bioenergy Use: Overview of the Bioenergy Demand Phase of the EMF-33 Model Comparison. Clim. Chang. 2020, 163, 1553–1568. [Google Scholar] [CrossRef]
- Sachverständigenrat für Umweltfragen (SRU). Pariser Klimaziele Erreichen Mit Dem CO2-Budget; Sachverständigenrat für Umweltfragen (SRU): Berlin, Germany, 2021. [Google Scholar]
- Knopf, B.; Geden, O. Ist Deutschland auf dem 1,5-Grad-Pfad? Eine Einordnung der Diskussion über ein nationales CO2-Budget; Mercator Research Institute on Global Commons and Climate Change: Berlin, Germany, 2022. [Google Scholar]
- Calliess, C. Rechtsstaat und Umweltstaat. Zugleich ein Beitrag zur Grundrechtsdogmatik im Rahmen mehrpoliger Verfassungsrechtsverhältnisse; Mohr Siebeck: Tübingen, Germany, 2001. [Google Scholar]
- Šušnjar, D. Proportionality, Fundamental Rights, and Balance of Powers; Brill Nijhoff: Leiden, The Netherlands, 2010. [Google Scholar]
- Meßerschmidt, K. Gesetzgebungsermessen; Berliner Juristische Universitätsschriften Reihe Öffentliches Recht; Berlin-Verlag Spitz & Nomos Verlagsgesellschaft: Berlin, Germany, 2000. [Google Scholar]
- Prigogine, I. The End of Certainty: Time, Chaos, and the New Laws of Nature; Free Press: New York, NY, USA, 1997. [Google Scholar]
- Fuglestvedt, J.; Rogelj, J.; Millar, R.J.; Allen, M.; Boucher, O.; Cain, M.; Forster, P.M.; Kriegler, E.; Shindell, D. Implications of Possible Interpretations of ‘Greenhouse Gas Balance’ in the Paris Agreement. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2018, 376, 20160445. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; O’Neill, B.C. The Paris Agreement Zero-Emissions Goal Is Not Always Consistent with the 1.5 °C and 2 °C Temperature Targets. Nat. Clim. Chang. 2018, 8, 319–324. [Google Scholar] [CrossRef]
- Luderer, G.; Vrontisi, Z.; Bertram, C.; Edelenbosch, O.Y.; Pietzcker, R.C.; Rogelj, J.; De Boer, H.S.; Drouet, L.; Emmerling, J.; Fricko, O.; et al. Residual Fossil CO2 Emissions in 1.5–2 °C Pathways. Nat. Clim. Chang. 2018, 8, 626–633. [Google Scholar] [CrossRef]
- Hugelius, G.; Loisel, J.; Chadburn, S.; Jackson, R.B.; Jones, M.; MacDonald, G.; Marushchak, M.; Olefeldt, D.; Packalen, M.; Siewert, M.B.; et al. Large Stocks of Peatland Carbon and Nitrogen Are Vulnerable to Permafrost Thaw. Proc. Natl. Acad. Sci. USA 2020, 117, 20438–20446. [Google Scholar] [CrossRef]
- Li, H.; Väliranta, M.; Mäki, M.; Kohl, L.; Sannel, A.B.K.; Pumpanen, J.; Koskinen, M.; Bäck, J.; Bianchi, F. Overlooked Organic Vapor Emissions from Thawing Arctic Permafrost. Environ. Res. Lett. 2020, 15, 104097. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Buhofer, S. Der Klimawandel und die internationale Klimapolitik in Zahlen: Eine Übersicht; Oekom Verlag: Munich, Germany, 2017. [Google Scholar]
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards Limiting Global Mean Temperature Increase below below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Leach, N.J.; Millar, R.J.; Haustein, K.; Jenkins, S.; Graham, E.; Allen, M.R. Current Level and Rate of Warming Determine Emissions Budgets under Ambitious Mitigation. Nat. Geosci. 2018, 11, 574–579. [Google Scholar] [CrossRef]
- Schurer, A.P.; Cowtan, K.; Hawkins, E.; Mann, M.E.; Scott, V.; Tett, S.F.B. Interpretations of the Paris Climate Target. Nat. Geosci. 2018, 11, 220–221. [Google Scholar] [CrossRef]
- Hawkins, E.; Ortega, P.; Suckling, E.; Schurer, A.; Hegerl, G.; Jones, P.; Joshi, M.; Osborn, T.J.; Masson-Delmotte, V.; Mignot, J.; et al. Estimating Changes in Global Temperature since the Preindustrial Period. Bull. Am. Meteorol. Soc. 2017, 98, 1841–1856. [Google Scholar] [CrossRef]
- Meinshausen, M.; Wigley, T.M.L.; Raper, S.C.B. Emulating Atmosphere-Ocean and Carbon Cycle Models with a Simpler Model, MAGICC6—Part 2: Applications. Atmos. Chem. Phys. 2011, 11, 1457–1471. [Google Scholar] [CrossRef] [Green Version]
- Schurer, A.P.; Mann, M.E.; Hawkins, E.; Tett, S.F.B.; Hegerl, G.C. Importance of the Pre-Industrial Baseline for Likelihood of Exceeding Paris Goals. Nat. Clim. Chang. 2017, 7, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Francsen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Tan, I.; Storelvmo, T.; Zelinka, M.D. Observational Constraints on Mixed-Phase Clouds Imply Higher Climate Sensitivity. Science 2016, 352, 224–227. [Google Scholar] [CrossRef]
- Friedrich, T.; Timmermann, A.; Tigchelaar, M.; Elison Timm, O.; Ganopolski, A. Nonlinear Climate Sensitivity and Its Implications for Future Greenhouse Warming. Sci. Adv. 2016, 2, e1501923. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Bony, S.; Dufresne, J.-L. Spread in Model Climate Sensitivity Traced to Atmospheric Convective Mixing. Nature 2014, 505, 37–42. [Google Scholar] [CrossRef]
- Zhai, C.; Jiang, J.H.; Su, H. Long-Term Cloud Change Imprinted in Seasonal Cloud Variation: More Evidence of High Climate Sensitivity: Cloud Feedback and Seasonal Variation. Geophys. Res. Lett. 2015, 42, 8729–8737. [Google Scholar] [CrossRef]
- Brown, P.T.; Caldeira, K. Greater Future Global Warming Inferred from Earth’s Recent Energy Budget. Nature 2017, 552, 45–50. [Google Scholar] [CrossRef]
- Knutti, R.; Rugenstein, M.A.A.; Hegerl, G.C. Beyond Equilibrium Climate Sensitivity. Nat. Geosci. 2017, 10, 727–736. [Google Scholar] [CrossRef]
- Sully, S.; Burkepile, D.E.; Donovan, M.K.; Hodgson, G.; van Woesik, R. A Global Analysis of Coral Bleaching over the Past Two Decades. Nat. Commun. 2019, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- den Elzen, M.; Admiraal, A.; Roelfsema, M.; van Soest, H.; Hof, A.F.; Forsell, N. Contribution of the G20 Economies to the Global Impact of the Paris Agreement Climate Proposals. Clim. Chang. 2016, 137, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Fujimori, S.; Su, X.; Liu, J.-Y.; Hasegawa, T.; Takahashi, K.; Masui, T.; Takimi, M. Implication of Paris Agreement in the Context of Long-Term Climate Mitigation Goals. SpringerPlus 2016, 5, 1620. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; Fricko, O.; Meinshausen, M.; Krey, V.; Zilliacus, J.J.J.; Riahi, K. Understanding the Origin of Paris Agreement Emission Uncertainties. Nat. Commun. 2017, 8, 15748. [Google Scholar] [CrossRef]
- Benveniste, H.; Boucher, O.; Guivarch, C.; Treut, H.L.; Criqui, P. Impacts of Nationally Determined Contributions on 2030 Global Greenhouse Gas Emissions: Uncertainty Analysis and Distribution of Emissions. Environ. Res. Lett. 2018, 13, 014022. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The Global Tree Restoration Potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Gellie, N.; Lowe, A.; Mollicone, D.; Rezende, M.; Routh, D.; Sacande, M.; Sparrow, B.; et al. Response to Comments on “The Global Tree Restoration Potential”. Science 2019, 366, eaay8108. [Google Scholar] [CrossRef]
- Luedeling, E.; Börner, J.; Amelung, W.; Schiffers, K.; Shepherd, K.; Rosenstock, T. Forest Restoration: Overlooked Constraints. Science 2019, 366, 315. [Google Scholar] [CrossRef] [PubMed]
- Stubenrauch, J.; Garske, B.; Ekardt, F.; Hagemann, K. European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target. Sustainability 2022, 14, 4365. [Google Scholar] [CrossRef]
- Strefler, J.; Bauer, N.; Kriegler, E.; Popp, A.; Giannousakis, A.; Edenhofer, O. Between Scylla and Charybdis: Delayed Mitigation Narrows the Passage between Large-Scale CDR and High Costs. Environ. Res. Lett. 2018, 13, 044015. [Google Scholar] [CrossRef]
- Williamson, P. Emissions Reduction: Scrutinize CO2 Removal Methods. Nature 2016, 530, 153–155. [Google Scholar] [CrossRef] [PubMed]
- Obersteiner, M.; Bednar, J.; Wagner, F.; Gasser, T.; Ciais, P.; Forsell, N.; Frank, S.; Havlik, P.; Valin, H.; Janssens, I.A.; et al. How to Spend a Dwindling Greenhouse Gas Budget. Nat. Clim. Chang. 2018, 8, 7–10. [Google Scholar] [CrossRef]
- Anderson, K.; Peters, G. The Trouble with Negative Emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef] [PubMed]
- van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.H.J.; van den Berg, M.; Bijl, D.L.; de Boer, H.S.; Daioglou, V.; Doelman, J.C.; Edelenbosch, O.Y.; Harmsen, M.; et al. Alternative Pathways to the 1.5 °C Target Reduce the Need for Negative Emission Technologies. Nat. Clim. Chang. 2018, 8, 391–397. [Google Scholar] [CrossRef]
- Ekardt, F.; von Bredow, H. Extended Emissions Trading Versus Sustainability Criteria: Managing the Ecological and Social Ambivalences of Bioenergy. Renew. Energy Law Policy Rev. 2012, 3, 49–64. [Google Scholar]
- Hennig, B. Nachhaltige Landnutzung und Bioenergie. Ambivalenzen, Governance, Rechtsfragen; Metropolis-Verlag: Marburg, Germany, 2017. [Google Scholar]
- Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; et al. Negative Emissions—Part 1: Research Landscape and Synthesis. Environ. Res. Lett. 2018, 13, 063001. [Google Scholar] [CrossRef]
- Biermann, F.; Möller, I. Rich Man’s Solution? Climate Engineering Discourses and the Marginalization of the Global South. Int. Environ. Agreem. Politics Law Econ. 2019, 19, 151–167. [Google Scholar] [CrossRef]
- Cronin, J.; Anandarajah, G.; Dessens, O. Climate Change Impacts on the Energy System: A Review of Trends and Gaps. Clim. Chang. 2018, 151, 79–93. [Google Scholar] [CrossRef]
- van Vliet, J.; Hof, A.F.; Mendoza Beltran, A.; van den Berg, M.; Deetman, S.; den Elzen, M.G.J.; Lucas, P.L.; van Vuuren, D.P. The Impact of Technology Availability on the Timing and Costs of Emission Reductions for Achieving Long-Term Climate Targets. Clim. Chang. 2014, 123, 559–569. [Google Scholar] [CrossRef]
- Erickson, P.; Kartha, S.; Lazarus, M.; Tempest, K. Assessing Carbon Lock-In. Environ. Res. Lett. 2015, 10, 084023. [Google Scholar] [CrossRef]
- Biermann, F.; Oomen, J.; Gupta, A.; Ali, S.H.; Conca, K.; Hajer, M.A.; Kashwan, P.; Kotzé, L.J.; Leach, M.; Messner, D.; et al. Solar Geoengineering: The Case for an International Non-use Agreement. WIREs Clim. Chang. 2022. [Google Scholar] [CrossRef]
- Bodansky, D. The Paris Climate Change Agreement: A New Hope? Am. J. Int. Law 2016, 110, 288–319. [Google Scholar] [CrossRef]
- Allan, J.I. Dangerous Incrementalism of the Paris Agreement. Glob. Environ. Politics 2019, 19, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Voigt, C. The Paris Agreement: What Is the Standard of Conduct for Parties? Zoom 2016, 26, 17–28. [Google Scholar]
- C/09/571932/HA ZA 19-379. 2021. Available online: https://uitspraken.rechtspraak.nl/inziendocument?id=ECLI:NL:RBDHA:2021:5339 (accessed on 4 April 2022).
- Verschuuren, J. The State of the Netherlands v Urgenda Foundation: The Hague Court of Appeal Upholds Judgment Requiring the Netherlands to Further Reduce Its Greenhouse Gas Emissions. Rev. Eur. Comp. Int. Environ. Law 2019, 28, 94–98. [Google Scholar] [CrossRef]
- N°1904967, 1904968, 1904972, 1904976/4-1; 2021. Available online: paris.tribunal-administratif.fr/content/download/179360/1759761/version/1/file/1904967190496819049721904976.pdf (accessed on 4 April 2022).
- Voigt, C.; Ferreira, F. Differentiation in the Paris Agreement. Clim. Law 2016, 6, 58–74. [Google Scholar] [CrossRef]
- Böhringer, A.-M. Das neue Pariser Klimaübereinkommen. Eine Kompromisslöung mit Symbolkraft und Verhaltenssteuerungspotential. Z. Für Ausländisches Offentl. Recht Völkerrecht 2016, 76, 753–795. [Google Scholar]
- Nückel, D. Rechtlicher Charakter des Pariser Übereinkommens—Hard Law oder Soft Law. ZUR 2017, 10, 525–531. [Google Scholar]
- Waisman, H.; Bataille, C.; Winkler, H.; Jotzo, F.; Shukla, P.; Colombier, M.; Buira, D.; Criqui, P.; Fischedick, M.; Kainuma, M.; et al. A Pathway Design Framework for National Low Greenhouse Gas Emission Development Strategies. Nat. Clim. Chang. 2019, 9, 261–268. [Google Scholar] [CrossRef]
- Voigt, C.; Ferreira, F. ‘Dynamic Differentiation’: The Principles of CBDR-RC, Progression and Highest Possible Ambition in the Paris Agreement. Transnatl. Environ. Law 2016, 5, 285–303. [Google Scholar] [CrossRef]
- Federal Constitutional Court. 1 BvR 2656/18; Federal Constitutional Court: Karlsruhe, Germany, 2021. [Google Scholar]
- Friends of the Irish Environment -v- The Government of Ireland & Ors [2020] IESC 49. 2020. Available online: https://www.courts.ie/view/judgments/681b8633-3f57-41b5-9362-8cbc8e7d9215/981c098a-462b-4a9a-9941-5d601903c9af/2020_IESC_49.pdf/pdf (accessed on 4 April 2022).
- Sharma by Her Litigation Representative Sister Marie Brigid Arthur v Minister for the Environment [2021] FCA 560; 2021. Available online: https://www.fedcourt.gov.au/services/access-to-files-and-transcripts/online-files/minister-for-the-environment-v-sharma/vid-389-of-2021-filed-documents/judgment-2021FCA560.pdf (accessed on 4 April 2022).
- Koch, T. Der Grundrechtsschutz des Drittbetroffenen: Zur Rekonstruktion der Grundrechte als Abwehrrechte; Jus Publicum; Mohr Siebeck: Tübingen, Germany, 2000. [Google Scholar]
- Skillington, T. Climate Change and the Human Rights Challenge: Extending Justice beyond the Borders of the Nation State. Int. J. Hum. Rights 2012, 16, 1196–1212. [Google Scholar] [CrossRef]
- Verheyen, R. Climate Change Damage and International Law: Prevention, Duties and State Responsibility; Developments in international law; M. Nijhoff & Brill: Boston, MA, USA; Leiden, The Netherlands, 2005. [Google Scholar]
- Unnerstall, H. Rechte Zukünftiger Generationen; Königshausen & Neumann: Würzburg, Germany, 1999. [Google Scholar]
- Schmidt-Radefeldt, R. Ökologische Menschenrechte: Ökologische Menschenrechtsinterpretation der EMRK und ihre Bedeutung für die Umweltschützenden Grundrechte Des Grundgesetzes; Leipziger Schriften zum Völkerrecht Europarecht und ausländischen öffentlichen Recht; Nomos Verlagsgesellschaft: Baden-Baden, Germany, 2000. [Google Scholar]
- Read, R.; Riordan, T. The Precautionary Principle Under Fire. Environ. Sci. Policy Sustain. Dev. 2017, 59, 4–15. [Google Scholar] [CrossRef]
- Patterson, J.J.; Thaler, T.; Hoffmann, M.; Hughes, S.; Oels, A.; Chu, E.; Mert, A.; Huitema, D.; Burch, S.; Jordan, A. Political Feasibility of 1.5°C Societal Transformations: The Role of Social Justice. Curr. Opin. Environ. Sustain. 2018, 31, 1–9. [Google Scholar] [CrossRef]
- Robinson, M.; Shine, T. Achieving a Climate Justice Pathway to 1.5 °C. Nat. Clim. Chang. 2018, 8, 564–569. [Google Scholar] [CrossRef]
- O’Riordan, T.; Cameron, J. Interpreting the Precautionary Principle; Routledge: London, UK, 2013. [Google Scholar]
- Sands, P.; Peel, J. Principles of International Environmental Law, 4th ed.; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Gardiner, S.M. A Core Precautionary Principle*. J. Political Philos. 2006, 14, 33–60. [Google Scholar] [CrossRef]
- Garske, B. Ordnungsrechtliche und Ökonomische Instrumente der Phosphor-Governance; Metropolis: Marburg, Germany, 2019. [Google Scholar]
- Stubenrauch, J. Phosphor-Governance in Ländervergleichender Perspektive—Deutschland, Costa Rica, Nicaragua. Ein Beitrag zur Nachhaltigkeits-und Bodenschutzpolitik; Metropolis: Marburg, Germany, 2019. [Google Scholar]
- Sunstein, C.R. Laws of Fear: Beyond the Precautionary Principle; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Gardiner, S.M. A Perfect Moral Storm—The Ethical Tragedy of Climate Change; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Ekardt, F.; Jacobs, B.; Stubenrauch, J.; Garske, B. Peatland Governance: The Problem of Depicting in Sustainability Governance, Regulatory Law, and Economic Instruments. Land 2020, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Rath, T.; Ekardt, F. Die EU-Emissionshandels-Reform und die Wärmewende. Klima und Recht 2022, 6, 138–142. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekardt, F.; Bärenwaldt, M.; Heyl, K. The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets. Environments 2022, 9, 112. https://doi.org/10.3390/environments9090112
Ekardt F, Bärenwaldt M, Heyl K. The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets. Environments. 2022; 9(9):112. https://doi.org/10.3390/environments9090112
Chicago/Turabian StyleEkardt, Felix, Marie Bärenwaldt, and Katharine Heyl. 2022. "The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets" Environments 9, no. 9: 112. https://doi.org/10.3390/environments9090112
APA StyleEkardt, F., Bärenwaldt, M., & Heyl, K. (2022). The Paris Target, Human Rights, and IPCC Weaknesses: Legal Arguments in Favour of Smaller Carbon Budgets. Environments, 9(9), 112. https://doi.org/10.3390/environments9090112