Monitoring and Management of Inland Waters: Insights from the Most Inhabited Italian Region
Abstract
:1. Introduction
2. Methodology
3. Is DDT the Past and Biocontrol the Future?
3.1. Levels, Trends, and Sources of DDx Pollution
3.2. From Chemical Pesticides to Biocontrol
4. The “Green Hydropower” Oxymoron
4.1. Current Status of Hydropower
4.2. Towards Environmental Flow and Sediment Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Seneviratne, S.I.; Zhang, X. Anthropogenic climate change detected in European renewable freshwater resources. Nat. Clim. Chang. 2017, 7, 813–816. [Google Scholar] [CrossRef]
- Hancock, P.J. Human impacts on the stream–groundwater exchange zone. Environ. Manag. 2002, 29, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Gleick, P.H. Global freshwater resources: Soft-path solutions for the 21st century. Science 2003, 302, 1524–1528. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Gin, K.Y.H.; Lin, A.Y.C.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef]
- Racchetti, E.; Salmaso, F.; Pinardi, M.; Quadroni, S.; Soana, E.; Sacchi, E.; Severini, E.; Celico, F.; Viaroli, P.; Bartoli, M. Is flood irrigation a potential driver of river-groundwater interactions and diffuse nitrate pollution in agricultural watersheds? Water 2019, 11, 2304. [Google Scholar] [CrossRef] [Green Version]
- Pericherla, S.; Karnena, M.K.; Vara, S. A review on impacts of agricultural runoff on freshwater resources. Int. J. Emerg. Tech. 2020, 11, 829–833. [Google Scholar]
- Zaccara, S.; Quadroni, S.; Vanetti, I.; Carosi, A.; La Porta, G.; Crosa, G.; Britton, R.J.; Lorenzoni, M. Morphologic and genetic variability in the Barbus fishes (Teleostei, Cyprinidae) of Central Italy. Zool. Scr. 2019, 48, 289–301. [Google Scholar] [CrossRef]
- Zaccara, S.; Quadroni, S.; De Santis, V.; Vanetti, I.; Carosi, A.; Crosa, G.; Britton, R.J.; Lorenzoni, M. Genetic and phenotypic displacement of an endemic Barbus complex by invasive European barbel Barbus barbus in central Italy. Biol. Invasions 2021, 23, 521–535. [Google Scholar] [CrossRef]
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2021, 50, 85–94. [Google Scholar] [CrossRef]
- De Santis, V.; Quadroni, S.; Britton, R.J.; Carosi, A.; Roberts, C.G.; Lorenzoni, M.; Crosa, G.; Zaccara, S. Biological and trophic consequences of genetic introgression between endemic and invasive Barbus fishes. Biol. Invasions 2021, 23, 3351–3368. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Logez, M.; Xu, J.; Tao, S.; Villéger, S.; Brosse, S. Human impacts on global freshwater fish biodiversity. Science 2021, 371, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- van Rees, C.B.; Waylen, K.A.; Schmidt-Kloiber, A.; Thackeray, S.J.; Kalinkat, G.; Martens, K.; Domisch, S.; Lillebø, A.I.; Hermoso, V.; Grossart, H.P.; et al. Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conserv. Lett. 2021, 14, e12771. [Google Scholar] [CrossRef]
- Friberg, N.; Bonada, N.; Bradley, D.C.; Dunbar, M.J.; Edwards, F.K.; Grey, J.; Hayes, R.B.; Hildrew, A.G.; Lamouroux, N.; Trimmer, M.; et al. Biomonitoring of human impacts in freshwater ecosystems: The good, the bad and the ugly. Adv. Ecol. Res. 2011, 44, 1–68. [Google Scholar] [CrossRef]
- Salmaso, F.; Quadroni, S.; Compare, S.; Gentili, G.; Crosa, G. Benthic diatoms as bioindicators of environmental alterations in different watercourses of northern Italy. Environ. Monit. Assess. 2019, 191, 158. [Google Scholar] [CrossRef]
- Buzzi, F.; Di Piazza, R.; Genoni, P. Stato Delle Acque Superficiali in Lombardia. Laghi. Aggiornamento 2014–2019 (Revisione Luglio 2021); ARPA Lombardia, Settore Monitoraggi Ambientali: Lombardy, Italy, 2021; 45p. [Google Scholar]
- Monti, C.; Paleari, M.; Tremolada, L.; Genoni, P. Stato Delle Acque Superficiali in Regione Lombardia. Corsi D’acqua. Rapporto sessennale 2014–2019 (Marzo 2021); ARPA Lombardia, Settore Monitoraggi Ambientali: Lombardy, Italy, 2021; 105p. [Google Scholar]
- Gatto, M.; Fiorese, G.; De Leo, G. Regional impacts of global climate change on ecosystems: An analysis of the Lombardy (northern Italy) case. In Global Climate Change and the Ecology of the Next Decade; Santangelo, G., Fronzoni, L., Eds.; Edizioni ETS: Pisa, Italy, 2008; pp. 71–90. [Google Scholar]
- Bettinetti, R.; Quadroni, S.; Galassi, S.; Bacchetta, R.; Bonardi, L.; Vailati, G. Is meltwater from Alpine glaciers a secondary DDT source for lakes? Chemosphere 2008, 73, 1027–1031. [Google Scholar] [CrossRef]
- Quadroni, S.; Bettinetti, R. Health risk assessment for the consumption of fresh and preserved fish (Alosa agone) from Lago di Como (Northern Italy). Environ. Res. 2017, 156, 571–578. [Google Scholar] [CrossRef]
- Espa, P.; Castelli, E.; Crosa, G.; Gentili, G. Environmental effects of storage preservation practices: Controlled flushing of fine sediment from a small hydropower reservoir. Environ. Manag. 2013, 52, 261–276. [Google Scholar] [CrossRef]
- Quadroni, S.; Crosa, G.; Gentili, G.; Espa, P. Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydropower. Sci. Total Environ. 2017, 609, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Rama, D.; Pretolani, R. Il Sistema Agro-Alimentare Della Lombardia: Rapporto 2020; Franco Angeli Edizioni: Milan, Italy, 2021; 408p. [Google Scholar]
- Rama, D.; Pretolani, R. Il Sistema Agro-Alimentare Della Lombardia: Rapporto 2019; Franco Angeli Edizioni: Milan, Italy, 2020; 422p. [Google Scholar]
- Rama, D.; Pretolani, R. Il Sistema Agro-Alimentare Della Lombardia: Rapporto 2018; Franco Angeli Edizioni: Milan, Italy, 2019; 406p. [Google Scholar]
- Rama, D.; Pretolani, R. Il Sistema Agro-Alimentare Della Lombardia: Rapporto 2017; Franco Angeli Edizioni: Milan, Italy, 2018; 400p. [Google Scholar]
- Pieri, R.; Pretolani, R. Il Sistema Agro-Alimentare Della Lombardia: Rapporto 2016; Franco Angeli Edizioni: Milan, Italy, 2017; 434p. [Google Scholar]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Quadroni, S.; Bettinetti, R. An unnoticed issue: Organochlorine pesticides in tobacco products around the world. Chemosphere 2019, 219, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Bettinetti, R.; Quadroni, S.; Crosa, G.; Harper, D.; Dickie, J.; Kyalo, M.; Mavuti, K.; Galassi, S. A preliminary evaluation of the DDT contamination of sediments in Lakes Natron and Bogoria (Eastern Rift Valley, Africa). Ambio 2011, 40, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Macdonald, R.W. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review. Sci. Total Environ. 2005, 342, 87–106. [Google Scholar] [CrossRef]
- Guzzella, L.M.; Novati, S.; Casatta, N.; Roscioli, C.; Valsecchi, L.; Binelli, A.; Parolini, M.; Solcà, N.; Bettinetti, R.; Manca, M.; et al. Spatial and temporal trends of target organic and inorganic micropollutants in Lake Maggiore and Lake Lugano (Italian-Swiss water bodies): Contamination in sediments and biota. Hydrobiologia 2018, 824, 271–290. [Google Scholar] [CrossRef]
- Marziali, L.; Guzzella, L.; Salerno, F.; Marchetto, A.; Valsecchi, L.; Tasselli, S.; Roscioli, C.; Schiavon, A. Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): Relation with anthropogenic factors. Environ. Sci. Pollut. Res. 2021, 28, 38193–38208. [Google Scholar] [CrossRef]
- Bettinetti, R.; Galassi, S.; Guilizzoni, P.; Quadroni, S. Sediment analysis to support the recent glacial origin of DDT pollution in Lake Iseo (Northern Italy). Chemosphere 2011, 85, 163–169. [Google Scholar] [CrossRef]
- Bettinetti, R.; Quadroni, S.; Boggio, E.; Galassi, S. Recent DDT and PCB contamination in the sediment and biota of the Como Bay (Lake Como, Italy). Sci. Total Environ. 2016, 542, 404–410. [Google Scholar] [CrossRef]
- Espa, P.; Crosa, G.; Gentili, G.; Quadroni, S.; Petts, G. Downstream ecological impacts of controlled sediment flushing in an Alpine valley river: A case study. River. Res. Appl. 2015, 31, 931–942. [Google Scholar] [CrossRef]
- Espa, P.; Brignoli, M.L.; Crosa, G.; Gentili, G.; Quadroni, S. Controlled sediment flushing at the Cancano Reservoir (Italian Alps): Management of the operation and downstream environmental impact. J. Environ. Manag. 2016, 182, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Quadroni, S.; Brignoli, M.L.; Crosa, G.; Gentili, G.; Salmaso, F.; Zaccara, S.; Espa, P. Effects of sediment flushing from a small Alpine reservoir on downstream aquatic fauna. Ecohydrology 2016, 9, 1276–1288. [Google Scholar] [CrossRef]
- Espa, P.; Batalla, R.J.; Brignoli, M.L.; Crosa, G.; Gentili, G.; Quadroni, S. Tackling reservoir siltation by controlled sediment flushing: Impact on downstream fauna and related management issues. PLoS ONE 2019, 14, e0218822. [Google Scholar] [CrossRef] [PubMed]
- Bettinetti, R.; Galassi, S.; Guzzella, L.; Quadroni, S.; Volta, P. The role of zooplankton in DDT biomagnification in a pelagic food web of Lake Maggiore (Northern Italy). Environ. Sci. Pollut. Res. 2010, 17, 1508–1518. [Google Scholar] [CrossRef]
- Bettinetti, R.; Quadroni, S.; Manca, M.; Piscia, R.; Volta, P.; Guzzella, L.; Roscioli, C.; Galassi, S. Seasonal fluctuations of DDTs and PCBs in zooplankton and fish of Lake Maggiore (Northern Italy). Chemosphere 2012, 88, 344–351. [Google Scholar] [CrossRef]
- Bettinetti, R.; Garibaldi, L.; Leoni, B.; Quadroni, S.; Galassi, S. Zooplankton as an early warning system of persistent organic pollutants contamination in a deep lake (lake Iseo, Northern Italy). J. Limnol. 2012, 71, 335–338. [Google Scholar] [CrossRef]
- Mazzoni, M.; Boggio, E.; Manca, M.; Piscia, R.; Quadroni, S.; Bellasi, A.; Bettinetti, R. Trophic transfer of persistent organic pollutants through a pelagic food web: The case of Lake Como (Northern Italy). Sci. Total Environ. 2018, 640, 98–106. [Google Scholar] [CrossRef]
- Kelce, W.R.; Stone, C.R.; Laws, S.C.; Gray, L.E.; Kemppainen, J.A.; Wilson, E.M. Persistent DDT metabolite p, p’–DDE is a potent androgen receptor antagonist. Nature 1995, 375, 581–585. [Google Scholar] [CrossRef]
- Bettinetti, R.; Croce, V.; Noè, F.; Ponti, B.; Quadroni, S.; Galassi, S. Ecotoxicity of pp’DDE to Daphnia magna. Ecotoxicology 2013, 22, 1255–1263. [Google Scholar] [CrossRef]
- Meffe, R.; de Bustamante, I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014, 481, 280–295. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; Van Lenteren, J.C. The status of biological control and recommendations for improving uptake for the future. BioControl 2018, 63, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Roh, J.Y.; Choi, J.Y.; Li, M.S.; Jin, B.R.; Je, Y.H. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 2007, 17, 547–559. [Google Scholar]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastore, M.; Quadroni, S.; Toscano, A.; Mottadelli, N.; Brivio, M.F. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J. Therm. Biol. 2019, 79, 15–23. [Google Scholar] [CrossRef]
- Hajek, A.E.; Gardescu, S.; Delalibera, I. Summary of classical biological control introductions of entomopathogens and nematodes for insect control. Biocontrol 2021, 66, 167–180. [Google Scholar] [CrossRef]
- RRN—Rete Rurale Nazionale. Bioreport 2017–2018. In Agricoltura Biologica in Italia; Programma Rete Rurale Nazionale 2014–2020: Roma, Italy, 2019; 185p. [Google Scholar]
- Laznik, Ž.; Tóth, T.; Lakatos, T.; Vidrih, M.; Trdan, S. Oulema melanopus (L.)(Coleoptera: Chrysomelidae) adults are susceptible to entomopathogenic nematodes (Rhabditida) attack: Results from a laboratory study. J. Plant Dis. Prot. 2010, 117, 30–32. [Google Scholar] [CrossRef]
- Mastore, M.; Binda Rossetti, S.; Giovannardi, S.; Scari, G.; Brivio, M.F. Inducible factors with antimicrobial activity after immune challenge in the haemolymph of Red Palm Weevil (Insecta). Innate Immun. 2015, 21, 392–405. [Google Scholar] [CrossRef] [Green Version]
- Brivio, M.F.; Mastore, M. When appearance misleads: The role of the entomopathogen surface in the relationship with its host. Insects 2020, 11, 387. [Google Scholar] [CrossRef]
- De Lerma Barbaro, A.; Gariboldi, M.B.; Mastore, M.; Brivio, M.F.; Giovannardi, S. In Vivo Effects of a pro-PO system Inhibitor on the phagocytosis of Xenorhabdus nematophila in Galleria mellonella Larvae. Insects 2019, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Mastore, M.; Quadroni, S.; Brivio, M.F. Susceptibility of Drosophila suzukii larvae to the combined administration of the entomopathogens Bacillus thuringiensis and Steinernema carpocapsae. Sci. Rep. 2021, 11, 8149. [Google Scholar] [CrossRef] [PubMed]
- Mastore, M.; Caramella, S.; Quadroni, S.; Brivio, M.F. Drosophila suzukii Susceptibility to the Oral Administration of Bacillus thuringiensis, Xenorhabdus nematophila and Its Secondary Metabolites. Insects 2021, 12, 635. [Google Scholar] [CrossRef] [PubMed]
- Poprawski, J.T.; Majchrowicz, I. Effects of herbicides on in vitro vegetative growth and sporulation of entomopathogenic fungi. Crop Prot. 1995, 14, 81–87. [Google Scholar] [CrossRef]
- Özdemir, E.; İnak, E.; Evlice, E.; Laznik, Z. Compatibility of entomopathogenic nematodes with pesticides registered in vegetable crops under laboratory conditions. J. Plant Dis. Prot. 2020, 127, 529–535. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Comiti, F. How natural are Alpine mountain rivers? Evidence from the Italian Alps. Earth Surf. Processes Landf. 2012, 37, 693–707. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Graf, W.L. Dam nation: A geographic census of American dams and their largescale hydrologic impacts. Water Resour. Res. 1999, 35, 1305–1311. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Pisaniello, J.D.; Tingey-Holyoak, J.; Burritt, R.L. Appropriate small dam management for minimizing catchment-wide safety threats: International benchmarked guidelines and demonstrative cases studies. Water Resour. Res. 2012, 48, W01546. [Google Scholar] [CrossRef]
- Bocchiola, D.; Rosso, R. Safety of Italian dams in the face of flood hazard. Adv. Water Resour. 2014, 71, 23–31. [Google Scholar] [CrossRef]
- Available online: https://www.enelgreenpower.com/learning-hub/renewable-energies/hydroelectric-energy/italy (accessed on 6 October 2021).
- Grantham, T.E.; Viers, J.H.; Moyle, P.B. Systematic screening of dams for environmental flow assessment and implementation. Bioscience 2014, 64, 1006–1018. [Google Scholar] [CrossRef] [Green Version]
- Mezger, G.; De Stefano, L.; del Tánago, M.G. Assessing the establishment and implementation of environmental flows in Spain. Environ. Manag. 2019, 64, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Opperman, J.J.; Kendy, E.; Barrios, E. Securing environmental flows through system reoperation and management: Lessons from case studies of implementation. Front. Environ. Sci. 2019, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Ramos, V.; Formigo, N.; Maia, R. Environmental flows under the WFD implementation. Water Resour. Manag. 2018, 32, 5115–5149. [Google Scholar] [CrossRef]
- Renöfält, B.M.; Jansson, R.; Nilsson, C. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw. Biol. 2010, 55, 49–67. [Google Scholar] [CrossRef]
- Ma, L.; Wang, H.; Qi, C.; Zhang, X.; Zhang, H. Characteristics and adaptability assessment of commonly used ecological flow methods in water storage and hydropower projects, the case of Chinese river basins. Water 2019, 11, 2035. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Chen, A.; Zhang, X.; McClain, M.E. A comment on Chinese policies to avoid negative impacts on river ecosystems by hydropower projects. Water 2020, 12, 869. [Google Scholar] [CrossRef] [Green Version]
- Tennant, D.L. Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1976, 1, 6–10. [Google Scholar] [CrossRef]
- McKay, S.K. Quantifying tradeoffs associated with hydrologic environmental flow methods. J. Am. Water Resour. Assoc. 2015, 51, 1508–1518. [Google Scholar] [CrossRef]
- Acreman, M. Environmental flows—Basics for novices. WIREs Water 2016, 3, 622–628. [Google Scholar] [CrossRef] [Green Version]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. Bioscience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Davis, M.M.; Apse, C.; Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 2012, 28, 1312–1321. [Google Scholar] [CrossRef]
- Yin, X.A.; Yang, Z.F.; Petts, G.E. Optimizing environmental flows below dams. River Res. Appl. 2012, 28, 703–716. [Google Scholar] [CrossRef]
- Yarnell, S.M.; Petts, G.E.; Schmidt, J.C.; Whipple, A.A.; Beller, E.E.; Dahm, C.N.; Goodwin, P.; Viers, J.H. Functional flows in modified riverscapes: Hydrographs, habitats and opportunities. Bioscience 2015, 65, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Quadroni, S.; Salmaso, F.; Gentili, G.; Crosa, G.; Espa, P. Response of benthic macroinvertebrates to different hydropower off-stream diversion schemes. Ecohydrology 2021, 14, e2267. [Google Scholar] [CrossRef]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Schmidt, J.C.; Wilcock, P.R. Metrics for assessing the downstream effects of dams. Water Resour. Res. 2008, 44, W04404. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E.; Bledsoe, B.P.; Jacobson, R.B.; Poff, N.L.; Rathburn, S.L.; Walters, D.M.; Wilcox, A.C. The natural sediment regime in rivers: Broadening the foundation for ecosystem management. BioScience 2015, 65, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Gabbud, C.; Lane, S.N. Ecosystem impacts of Alpine water intakes for hydropower: The challenge of sediment management. WIREs Water 2016, 3, 41–61. [Google Scholar] [CrossRef]
- Chamoun, S.; De Cesare, G.; Schleiss, A.J. Management of turbidity current venting in reservoirs under different bed slopes. J. Environ. Manag. 2017, 204, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Gabbud, C.; Robinson, C.T.; Lane, S.N. Summer is in winter: Disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Sci. Total Environ. 2019, 650, 2164–2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graf, W.L.; Wohl, E.; Sinha, T.; Sabo, J.L. Sedimentation and sustainability of western American reservoirs. Water Resour. Res. 2010, 46, W12535. [Google Scholar] [CrossRef]
- Juracek, K.E. The aging of America’s reservoirs: In-reservoir and downstream physical changes and habitat implications. J. Am. Water Resour. Assoc. 2015, 51, 168–184. [Google Scholar] [CrossRef]
- George, M.W.; Hotchkiss, R.H.; Huffaker, R. Reservoir sustainability and sediment management. J. Water Res. Plan Man. 2016, 143, 04016077. [Google Scholar] [CrossRef] [Green Version]
- Schleiss, A.J.; Franca, M.J.; Juez, C.; De Cesare, G. Reservoir sedimentation. J. Hydraul. Res. 2016, 54, 595–614. [Google Scholar] [CrossRef]
- Ho, M.; Lall, U.; Allaire, M.; Devineni, N.; Kwon, H.H.; Pal, I.; Raff, D.; Wegner, D. The future role of dams in the United States of America. Water Resour Res. 2017, 53, 982–998. [Google Scholar] [CrossRef]
- Hauer, C.; Wagner, B.; Aigner, J.; Holzapfel, P.; Flödl, P.; Liedermann, M.; Tritthart, M.; Sindelar, C.; Pulg, U.; Klösch, M.; et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review. Renew. Sust. Energ. Rev. 2018, 98, 40–55. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Wang, H.W.; Kondolf, M.; Tullos, D.; Kuo, W.C. Sediment Management in Taiwan’s Reservoirs and Barriers to Implementation. Water 2018, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoir, and Watersheds for Sustainable Use; McGraw-Hill Book Co.: New York, NY, USA, 1997; 848p. [Google Scholar]
- Annandale, G.W.; Morris, G.L.; Karki, P. Extending the Life of Reservoirs; World Bank Publications: Washington, DC, USA, 2016; 193p. [Google Scholar] [CrossRef]
- Reckendorfer, W.; Badura, H.; Schütz, C. Drawdown flushing in a chain of reservoirs—Effects on grayling populations and implications for sediment management. Ecol. Evol. 2019, 9, 1437–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosa, G.; Castelli, E.; Gentili, G.; Espa, P. Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an Alpine stream. Aquat. Sci. 2010, 72, 85–95. [Google Scholar] [CrossRef]
- Salmaso, F.; Crosa, G.; Espa, P.; Gentili, G.; Quadroni, S.; Zaccara, S. Benthic macroinvertebrates response to water management in a lowland river: Effects of hydro-power vs irrigation off-stream diversions. Environ. Monit. Assess. 2018, 190, 33. [Google Scholar] [CrossRef]
- Doretto, A.; Piano, E.; Fenoglio, S.; Bona, F.; Crosa, G.; Espa, P.; Quadroni, S. Beta-diversity and stressor specific index reveal patterns of macroinvertebrate community response to sediment flushing. Ecol. Indic. 2021, 122, 107256. [Google Scholar] [CrossRef]
- Calabrese, S.; Mezzanotte, V.; Marazzi, F.; Canobbio, S.; Fornaroli, R. The influence of multiple stressors on macroinvertebrate communities and ecosystem attributes in Northern Italy pre-Alpine rivers and streams. Ecol. Indic. 2020, 115, 106408. [Google Scholar] [CrossRef]
- Larsen, S.; Bruno, M.C.; Zolezzi, G. WFD ecological status indicator shows poor correlation with flow parameters in a large Alpine catchment. Ecol. Indic. 2019, 98, 704–711. [Google Scholar] [CrossRef]
- Salmaso, F.; Crosa, G.; Espa, P.; Quadroni, S. Climate Change and Water Exploitation as Co-Impact Sources on River Benthic Macroinvertebrates. Water 2021, 13, 2778. [Google Scholar] [CrossRef]
- Salmaso, F.; Quadroni, S.; Gentili, G.; Crosa, G. Thermal regime of a highly regulated Italian river (Ticino River) and implications for aquatic communities. J. Limnol. 2017, 76, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Salmaso, F.; Crosa, G.; Espa, P.; Gentili, G.; Quadroni, S. The year after an extraordinary sedimentation event in a regulated Alpine river: The impact on benthic macroinvertebrate communities. River Res. Appl. 2020, 36, 1656–1667. [Google Scholar] [CrossRef]
- Salmaso, F.; Espa, P.; Crosa, G.; Quadroni, S. Impacts of fine sediment input on river macroinvertebrates: The role of the abiotic characteristics at mesohabitat scale. Hydrobiologia 2021, 848, 4189–4209. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
Use in tons (% Compared to Italy) | % Compared to 2010 Use | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2014 | 2015 | 2016 | 2017 | 2018 | |
Substances of animal and plant origin | 14.1 (9.5) | 23.9 (11.9) | 19.5 (7.8) | 16.7 (8.6) | 31.3 (14.2) | −20.6 | −7.5 | −9.5 | −10.2 | −1.5 |
Microorganisms | 0.2 (1.0) | 0.4 (1.5) | 0.2 (0.7) | 0.4 (1.0) | 0.3 (0.8) | −2.5 | 9.6 | 0.1 | 7.5 | 3.9 |
Others (including chemical compounds) | 5.5 (3.9) | 4.6 (3.6) | 3.2 (2.6) | 6.3 (3.8) | 4.6 (2.2) | 131.5 | 88.5 | 59.4 | 64.5 | 48.8 |
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|
Number of hydropower plants | - | 544 (14.7) | 594 (15.2) | 652 (15.0) | 661 (15.3) | 661 (15.3) |
Installed capacity (MW) | - | 6082.3 (27.0) | 5095.6 (27.3) | 5141.4 (27.3) | 5152.2 (27.2) | 5158.4 (27.2) |
Hydroelectricity production (GWh) | 10,531 (23.0) | 10,448 (22.7) | 10,874 (23.5) | 10,374 (21.3) | 10,408 (22.5) | - |
GWh (% compared to other renewable energies) | 62.6 | 62.1 | 62.0 | 60.7 | 60.5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quadroni, S.; Espa, P.; Zaccara, S.; Crosa, G.; Bettinetti, R.; Mastore, M.; Brivio, M.F. Monitoring and Management of Inland Waters: Insights from the Most Inhabited Italian Region. Environments 2022, 9, 27. https://doi.org/10.3390/environments9020027
Quadroni S, Espa P, Zaccara S, Crosa G, Bettinetti R, Mastore M, Brivio MF. Monitoring and Management of Inland Waters: Insights from the Most Inhabited Italian Region. Environments. 2022; 9(2):27. https://doi.org/10.3390/environments9020027
Chicago/Turabian StyleQuadroni, Silvia, Paolo Espa, Serena Zaccara, Giuseppe Crosa, Roberta Bettinetti, Maristella Mastore, and Maurizio Francesco Brivio. 2022. "Monitoring and Management of Inland Waters: Insights from the Most Inhabited Italian Region" Environments 9, no. 2: 27. https://doi.org/10.3390/environments9020027
APA StyleQuadroni, S., Espa, P., Zaccara, S., Crosa, G., Bettinetti, R., Mastore, M., & Brivio, M. F. (2022). Monitoring and Management of Inland Waters: Insights from the Most Inhabited Italian Region. Environments, 9(2), 27. https://doi.org/10.3390/environments9020027