Relationship of Fluoride Concentration to Well Depth in an Alluvial Aquifer in a Semiarid Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling and Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride occurrence in groundwater systems at global scale and status of defluoridation—State of the art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- Podgorsky, J.; Berg, M. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 2022, 13, 4232. [Google Scholar] [CrossRef] [PubMed]
- McMahon, P.B.; Brown, C.J.; Johnson, T.D.; Belitz, K.; Lindsey, B.D. Fluoride occurrence in United States groundwater. Sci. Total Environ. 2020, 732, 139217. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Ma, T.; Ma, R. Geochemical processes controlling the elevated fluoride concentrations in ground waters of the Taiyuan Basin, Northern China. J. Geochem. Explor. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Jia, H.; Qian, H.; Qu, W.; Zheng, L.; Feng, W.; Ren, W. Fluoride occurrence and human health risk in drinking water wells from southern edge of Chinese Loess Plateau. Int. J. Environ. Res. Public Health 2019, 16, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zheng, C.; Ma, R. Review: Safe and sustainable groundwater supply in China. Hydrogeol. J. 2018, 26, 1301–1324. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhu, C.; Xue, X.; Qian, K.; Xie, X.; Wang, Y. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain. Sci. Total Environ. 2020, 730, 138877. [Google Scholar] [CrossRef]
- Su, H.; Kang, W.; Kang, N.; Liu, J.; Li, Z. Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. Environ. Res. 2021, 200, 111476. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Alarcón-Herrera, M.T. Fluoruro en aguas subterráneas de la región centro-norte de México y su posible origen. Rev. Int. Contam. Ambient. 2022, 38, 389–397. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Venkatesh, A.S.; Udayabhanu, G.; Sahoo, P.R. Medical Geological assessment of fluoride contaminated groundwater in parts of Indo-Gangetic Alluvial plains. Sci. Rep. 2019, 9, 16243. [Google Scholar] [CrossRef]
- Edmunds, W.M.; Smedley, P.L.; Selinus, O. Fluoride in natural waters. In Essentials of Medical Geology, 2nd ed.; Alloway, B., Centeno, J.A., Finkelman, R.B., Fuge, R., Lindh, U., Smedley, P.L., Eds.; Springer: New York, NY, USA, 2013; pp. 311–336. [Google Scholar]
- Jiménez-Córdova, M.I.; Sánchez-Peña, L.C.; Barrera-Hernández, A.; González-Horta, C.; Barbier, O.; Del Razo, L.M. Fluoride is associated with altered metabolism of arsenic in an adult Mexican population. Sci. Total Environ. 2019, 684, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Alarcón-Herrera, M.T.; Martin-Alarcon, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698, 134168. [Google Scholar] [CrossRef] [PubMed]
- González-Horta, C.; Ballinas-Casarrubias, L.; Sánchez-Ramírez, B.; Ishida, M.C.; Barrera-Hernández, A.; Gutiérrez-Torres, D.; Zacarias, O.L.; Saunders, R.J.; Drobná, Z.; Mendez, M.A.; et al. A Concurrent Exposure to Arsenic and Fluoride from Drinking Water in Chihuahua, Mexico. Int. J. Environ. Res. Public Health 2015, 12, 4587–4601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, O.; Gonzalez, J.; Júnez-Ferreira, H.E.; Bautista, C.-F.; Cardona, A. Correlation of arsenic and fluoride in the groundwater for human consumption in a semiarid region of Mexico. Procedia Eng. 2016, 186, 333–340. [Google Scholar] [CrossRef]
- Armienta, M.A.; Segovia, N. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Macías, J.C.; Ochoa-Martínez, A.C.; Orta-García, S.T.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Probabilistic human health risk assessment associated with fluoride and arsenic co-occurrence in drinking water from the metropolitan area of San Luis Potosí, Mexico. Environ. Monit. Assessm. 2020, 192, 712. [Google Scholar] [CrossRef]
- Li, C.C.; Gao, X.B.; Zhang, X.; Wang, Y.X.; Howard, K. Groundwater fluoride and arsenic mobilization in a typical deep aquifer system within a semi-arid basin. J. Hydrol. 2022, 609, 127767. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Elumalai, V. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution and management. Exp. Health 2020, 12, 355e368. [Google Scholar] [CrossRef]
- Maity, J.P.; Vithanage, M.; Kumar, M.; Ghosh, A.; Mohan, D.; Ahmad, A.; Bhattacharya, P. Seven 21st century challenges of arsenic-fluoride contamination and remediation. Groundw. Sustain. Dev. 2021, 12, 100538. [Google Scholar] [CrossRef]
- Cinti, D.; Vaselli, O.; Poncia, P.P.; Brusca, L.; Grassa, F.; Procesi, M.; Tassi, F. Anomalous concentrations of arsenic, fluoride and radón in volcanic sedimentary aquifers from central Italy: Quality indexes for management of the water resource. Environ. Pollut. 2019, 253, 525–537. [Google Scholar] [CrossRef]
- Kumar, M.; Goswami, R.; Patel, A.K.; Srivastava, M.; Das, N. Scenario, perspectives, and mechanism of arsenic and fluoride co-occurrence in the groundwater: A review. Chemosphere 2020, 249, 126126. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Guerrero, M.A. Presencia, distribución, hidrogeoquimica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, Mexico. Rev. Mex. Cienc. Geol. 2009, 26, 143–161. [Google Scholar]
- Reyes-Gómez, V.M.; Alarcón-Herrera, M.T.; Gutiérrez, M.; Núñez-López, D. Fluoride and arsenic in an alluvial aquifer system in Chihuahua, Mexico: Contaminant levels, potential sources, and co-occurrence. Water Air Soil Pollut. 2013, 224, 1433. [Google Scholar] [CrossRef]
- NOM014-SSA1-1993; Norma Oficial Mexicana. Procedimientos Sanitarios Para el Muestreo de Agua Para uso y Consumo Humano en Sistemas de Abastecimiento de Agua Públicos y Privados. Secretaría de Salud: Mexico City, Mexico, 1993. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4801645&fecha=12/11/1993#gsc.tab=0 (accessed on 9 December 2022).
- Rodríguez-Lozano, D.F. Evolución Espacial y Temporal de la Presencia de Fluoruros en el Acuífero Meoqui-Delicias, Chihuahua. Master’s Thesis, Facultad de Ingenieria, Universidad Autónoma de Chihuahua, Chihuahua, Mexico, 2022. [Google Scholar]
- Gutiérrez, M.; Calleros-Rincón, E.Y.; Espino-Valdés, M.S.; Alarcón-Herrera, M.T. Role of nitrogen in assessing the sustainability of irrigated areas: Case study of northern Mexico. Water Air Soil Pollut. 2021, 232, 148. [Google Scholar] [CrossRef]
- NMX-AA-077-SCFI-2001; Determination of Fluoride in natural Wastewaters Treated Wastewaters-Test Method. Secretaría de Economía: Mexico City, Mexico, 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/166793/NMX-AA-077-SCFI-2001.pdf (accessed on 9 December 2022).
- Lucero, B.A.R.; Gutiérrez, M.; Magaña, J.E.M.; Salcido, F.M.; Fierro, W.M. Salt Content of Dairy Farm Effluents as an Indicator of Salinization Risk to Soils. Soil Syst. 2018, 2, 61. [Google Scholar] [CrossRef] [Green Version]
- Rosecrans, C.; Belitz, K.; Ransom, K.M.; Stackelberg, P.E.; McMahon, P.B. Predicting regional fluoride concentrations at public and domestic supply depths in basin-fill aquifers of the western United States using a random forest model. Sci. Total Environ. 2022, 806, 150960. [Google Scholar] [CrossRef]
- Li, D.; Gao, X.; Wang, Y.; Luo, W. Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China. Environ. Pollut. 2018, 237, 430–441. [Google Scholar] [CrossRef]
Well | Location | Depth m | F 2003 1 mg L−1 | F 2006 1 mg L−1 | F 2021 mg L−1 | pH 2021 | TDS 2021 mg L−1 |
---|---|---|---|---|---|---|---|
D139 | La Merced | 70 | 1.70 | 1.67 | 1.56 | 7.70 | 794 |
D130 | Santa Fe | 320 | 0.67 | 0.82 | 0.94 | 7.30 | 2059 |
D136 | Est. Armendáriz | 200 | 2.89 | 2.50 | 2.61 | 7.19 | 863 |
J15 | Julimes | 79 | 3.84 | 4.13 | 4.84 | 7.04 | 1193 |
J16 | Ex-hacienda H. | 15 | 2.93 | 3.28 | 3.57 | 7.43 | 890 |
M6 | Potrero del Llano | 181 | 3.38 | 3.16 | 3.39 | 7.91 | 953 |
M19 | El Torreón | 60 | 1.86 | 2.58 | 3.12 | 7.98 | 701 |
M24 | Las Puentes | 36 | 2.46 | 2.40 | 2.85 | 7.43 | 539 |
M26 | Fco. Portillo | 150 | 1.09 | 0.98 | 0.91 | 7.54 | 355 |
M27 | Nuevo Loreto | 150 | 1.65 | 1.53 | 1.67 | 7.12 | 675 |
M40 | Est. Consuelo | 150 | 1.95 | 1.77 | 1.85 | 7.03 | 398 |
R2 | Barranco Blanco | 152 | 1.54 | 1.50 | 1.60 | 7.38 | 587 |
S47 | Orranteño | 90 | 1.63 | 1.30 | 1.31 | 7.03 | 735 |
S54 | Gomeño | 60 | 1.55 | 1.30 | 1.52 | 7.31 | 786 |
S56-3 | Saucillo P3 | 185 | 0.20 | 0.70 | 0.75 | 6.74 | 834 |
S56-8 | Saucillo P8 | 250 | 0.20 | 0.20 | 0.62 | 7.23 | 843 |
S57 | Vicente Guerrero | 180 | 1.02 | 1.00 | 0.89 | 7.58 | 456 |
S98 | Est. Saucillo | 137 | 1.40 | 2.40 | 1.32 | 7.22 | 668 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espino-Valdés, M.S.; Rodríguez-Lozano, D.F.; Gutiérrez, M.; Silva-Hidalgo, H.; Pinales-Munguía, A. Relationship of Fluoride Concentration to Well Depth in an Alluvial Aquifer in a Semiarid Area. Environments 2022, 9, 155. https://doi.org/10.3390/environments9120155
Espino-Valdés MS, Rodríguez-Lozano DF, Gutiérrez M, Silva-Hidalgo H, Pinales-Munguía A. Relationship of Fluoride Concentration to Well Depth in an Alluvial Aquifer in a Semiarid Area. Environments. 2022; 9(12):155. https://doi.org/10.3390/environments9120155
Chicago/Turabian StyleEspino-Valdés, María Socorro, Daniel F. Rodríguez-Lozano, Mélida Gutiérrez, Humberto Silva-Hidalgo, and Adán Pinales-Munguía. 2022. "Relationship of Fluoride Concentration to Well Depth in an Alluvial Aquifer in a Semiarid Area" Environments 9, no. 12: 155. https://doi.org/10.3390/environments9120155
APA StyleEspino-Valdés, M. S., Rodríguez-Lozano, D. F., Gutiérrez, M., Silva-Hidalgo, H., & Pinales-Munguía, A. (2022). Relationship of Fluoride Concentration to Well Depth in an Alluvial Aquifer in a Semiarid Area. Environments, 9(12), 155. https://doi.org/10.3390/environments9120155