The Impact of Using Co-Compost on Resource Management and Resilience of Smallholder Agriculture in South India
Abstract
:1. Introduction
1.1. Problem Status
1.2. Relevance
1.3. Research Gap
1.4. Objective
2. Materials and Methods
2.1. Co-Compost
2.2. Background of The Investigation Area
2.3. Methodology
3. Results
3.1. Challenges
3.2. Resource Management
3.3. Motivation
4. Discussion
4.1. Alternative Circular Co-Concepts
4.2. Co-Compost for Agriculture
4.3. Attitude of Farmers
4.4. Communication Aspects
4.5. Approach of the Methodology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiksel, J.; Sanjay, P.; Raman, K. Steps toward a resilient circular economy in India. Clean Technol. Environ. Policy 2020, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
- FAO. India at a Glace. Available online: https://www.fao.org/india/fao-in-india/india-at-a-glance/en/ (accessed on 9 December 2021).
- Graeub, B.E.; Chappell, M.J.; Wittman, H.; Ledermann, S.; Kerr, R.B.; Gemmill-Herren, B. The State of Family Farms in the World. World Dev. 2016, 87, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Sarma, P. Exploring the Opportunities and Constraints of Rural Livelihood: A Case Study of Small Farmers Engaged in Rice Cultivation in India. Alex. Sci. Exch. J. 2021, 42, 523–537. [Google Scholar] [CrossRef]
- Bisht, I.S.; Rana, J.C.; Pal Ahlawat, S. The Future of Smallholder Farming in India: Some Sustainability Considerations. Sustainability 2020, 12, 3751. [Google Scholar] [CrossRef]
- Sravanth, K.R.S.; Sundaram, N. Agricultural Crisis and Farmers Suicides in India. IJITEE 2019, 8, 1576–1580. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef] [Green Version]
- Datta, P.; Behera, B. What caused smallholders to change farming practices in the era of climate change? Empirical evidence from Sub-Himalayan West Bengal, India. GeoJournal 2021, 1–17. [Google Scholar] [CrossRef]
- Lansche, J.; Awiszus, S.; Latif, S.; Müller, J. Potential of Biogas Production from Processing Residues to Reduce Environmental Impacts from Cassava Starch and Crisp Production—A Case Study from Malaysia. Appl. Sci. 2020, 10, 2975. [Google Scholar] [CrossRef]
- Minale, M.; Worku, T. Anaerobic co-digestion of sanitary wastewater and kitchen solid waste for biogas and fertilizer production under ambient temperature: Waste generated from condominium house. Int. J. Environ. Sci. Technol. 2014, 11, 509–516. [Google Scholar] [CrossRef]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Singhvi, R. Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. Intern. J. Agricul. Environ. Biotech. 2017, 10, 675. [Google Scholar] [CrossRef]
- Patra, S.; Mishra, P.; Mahapatra, S.C.; Mithun, S.K. Modelling impacts of chemical fertilizer on agricultural production: A case study on Hooghly district, West Bengal, India. Model. Earth Syst. Environ. 2016, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mihelcic, J.R.; Fry, L.M.; Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 2011, 84, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Moomaw, W.; Barthel, M. The Critical Role of Global Food Consumption Patterns in Achieving Sustainable Food Systems and Food for All. A UNEP Discussion Paper; United Nations Environment Programme: Nairobi, Kenya, 2012. [Google Scholar]
- Kumar, S.; Smith, S.R.; Fowler, G.; Velis, C.; Kumar, S.J.; Arya, S.; Rena; Kumar, R.; Cheeseman, C. Challenges and opportunities associated with waste management in India. R. Soc. Open Sci. 2017, 4, 160764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, K.; Verma, I. Circular Economy: A Review of Global Practices and Initiatives with Special Reference to India. Focus 2021, 8, 187–205. [Google Scholar] [CrossRef]
- Sugihara, R. Reuse of Human Excreta in Developing Countries. Consilience 2020, 22, 58–64. [Google Scholar]
- Speier, C.J.; Mondal, M.M.; Weichgrebe, D. Evaluation of compositional characteristics of organic waste shares in municipal solid waste in fast-growing metropolitan cities of India. J. Mater. Cycles Waste Manag. 2018, 20, 2150–2162. [Google Scholar] [CrossRef]
- Hettiarachchi, H.; Caucci, S.; Schwärzel, K. Organic Waste Composting through Nexus Thinking; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-36282-9. [Google Scholar]
- Masullo, A. Organic wastes management in a circular economy approach: Rebuilding the link between urban and rural areas. Ecol. Eng. 2017, 101, 84–90. [Google Scholar] [CrossRef]
- Fendel, V.; Kranert, M.; Maurer, C.; Garcés-Sánchez, G.; Huang, J.; Ramakrishna, G. Stakeholder Assessment on Closing Nutrient Cycles through Co-Recycling of Biodegradable Household Kitchen Waste and Black Water between Rural and Urban Areas in South India. Recycling 2022, 7, 49. [Google Scholar] [CrossRef]
- Schroeder, P.; Anggraeni, K.; Weber, U. The Relevance of Circular Economy Practices to the Sustainable Development Goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 21 April 2022).
- Fendel, V.; Maurer, C.; Kranert, M.; Huang, J.; Schäffner, B. The Potential of the Co-Recycling of Secondary Biodegradable Household Resources Including Wild Plants to Close Nutrient and Carbon Cycles in Agriculture in Germany. Sustainability 2022, 14, 5277. [Google Scholar] [CrossRef]
- Müller, S.; Backhaus, N.; Nagabovanalli, P.; Abiven, S. A social-ecological system evaluation to implement sustainably a biochar system in South India. Agron. Sustain. Dev. 2019, 39, 1–4. [Google Scholar] [CrossRef]
- Patwa, N.; Sivarajah, U.; Seetharaman, A.; Sarkar, S.; Maiti, K.; Hingorani, K. Towards a circular economy: An emerging economies context. J. Bus. Res. 2021, 122, 725–735. [Google Scholar] [CrossRef]
- Girija, R.; Shettigar, N.A.; Parama, V.R.R.; Gagana, S. Evaluation of Co-Composted Faecal Sludge Application in Agriculture. In Proceedings of the The Sustainable City XIII. Sustainable City 2019, Valencia, Spain, 1–3 October 2019; Mambretti, S., Miralles i Garcia, J.L., Eds.; WIT Press: Southampton, UK, 2019; pp. 701–711. [Google Scholar]
- Torgbo, S.; Quaye, E.A.; Adongo, T.A.; Opoku, N. The effects of dried faecal sludge and municipal waste co-compost on microbial load and yield of cabbage (Brassica oleracea L. Var. capitata) and lettuce (Lactuca sativa). J. Microbiol. Biotechnol. Food Sci. 2021, 7, 555–561. [Google Scholar] [CrossRef]
- Mallory, A.; Akrofi, D.; Dizon, J.; Mohanty, S.; Parker, A.; Rey Vicario, D.; Prasad, S.; Welivita, I.; Brewer, T.; Mekala, S.; et al. Evaluating the circular economy for sanitation: Findings from a multi-case approach. Sci. Total Environ. 2020, 744, 140871. [Google Scholar] [CrossRef]
- Singh, S.; Ibrahim, M.A.; Pawar, S.; Brdjanovic, D. Public Perceptions of Reuse of Faecal Sludge Co-Compost in Bhubaneswar, India. Sustainability 2022, 14, 4489. [Google Scholar] [CrossRef]
- Gwara, S.; Wale, E.; Odindo, A.; Buckley, C. Attitudes and Perceptions on the Agricultural Use of Human Excreta and Human Excreta Derived Materials: A Scoping Review. Agriculture 2021, 11, 153. [Google Scholar] [CrossRef]
- Consortium for DEWATS Dissemination (CDD) Society, Bengaluru. Insights from Faecal Sludge Management in Devanahalli: Five Years of Operations. Available online: https://cddindia.org/wp-content/uploads/Insights-from-Devanahalli-December-2020.pdf (accessed on 8 August 2022).
- Rural Development Organisation (RDO) Trust. Faecal Sludge Treatment plants in Ketty and Adhigaratty panchayats in Nilgiris District. Available online: https://rdotrust.org/?page_id=495 (accessed on 8 August 2022).
- Farsi, A. Migranten auf dem Weg zur Elite? Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2014; ISBN 978-3-658-01563-3. [Google Scholar]
- Raithel, J. Quantitative Forschung: Ein Praxiskurs; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3531161814. [Google Scholar]
- Ritchie, J.; Lewis, J.; McNauthon Nicholls, C.; Ormston, R. Qualitative Research Practice: A Guide for Social Science Students and Researchers; NatCen Social Research: London, UK, 2003. [Google Scholar]
- Porst, R. Fragebogen: Ein Arbeitsbuch; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-658-02117-7. [Google Scholar]
- Krause, A.; Rotter, V. Recycling Improves Soil Fertility Management in Smallholdings in Tanzania. Agriculture 2018, 8, 31. [Google Scholar] [CrossRef]
- Remy, C.; Ruhland, A. Ecological Assessment of Alternative Sanitation Concepts with Life Cycle Assessment: Final Report for Subtask 5 of the Demonstration Project “Sanitation Concepts for Separate Treatment of Urine, Faeces and Greywater“ (SCST); Technical University Berlin: Berlin, Germany, 2006; Volume 55. [Google Scholar]
- Friedrich, J.; Poganietz, W.-R.; Lehn, H. Life-cycle assessment of system alternatives for the Water-Energy-Waste Nexus in the urban building stock. Resour. Conserv. Recycl. 2020, 158, 104808. [Google Scholar] [CrossRef]
- Sabki, M.H.; Lee, C.T.; Bong, C.P.C.; Klemens, J.J. A review on the economic feasibility of composting for organic waste management in Asian countries. Chem. Eng. Trans. 2018, 70, 49–54. [Google Scholar]
- Ezeudu, O.B.; Ezeudu, T.S.; Ugochukwu, U.C.; Agunwamba, J.C.; Oraelosi, T.C. Enablers and barriers to implementation of circular economy in solid waste valorization: The case of urban markets in Anambra, Southeast Nigeria. Environ. Sustain. Indic. 2021, 12, 100150. [Google Scholar] [CrossRef]
- Carr, G.; Potter, R.B.; Nortcliff, S. Water reuse for irrigation in Jordan: Perceptions of water quality among farmers. Agric. Water Manag. 2011, 98, 847–854. [Google Scholar] [CrossRef]
- Köck-Schulmeyer, M.; Ginebreda, A.; Postigo, C.; Lopez-Serna, R.; Perez, S.; Brix, R.; Llorca, M.; López de Alda, M.; Petrović, M.; Munne, A.; et al. Wastewater reuse in Mediterranean semi-arid areas: The impact of discharges of tertiary treated sewage on the load of polar micro pollutants in the Llobregat river (NE Spain). Chemosphere 2011, 82, 670–678. [Google Scholar] [CrossRef]
- Ceballos, F.; Kannan, S.; Kramer, B. Impacts of a national lockdown on smallholder farmers’ income and food security: Empirical evidence from two states in India. World Dev. 2020, 136, 105069. [Google Scholar] [CrossRef]
- Gwara, S.; Wale, E.; Odindo, A. Behavioral intentions of rural farmers to recycle human excreta in agriculture. Sci. Rep. 2022, 12, 5890. [Google Scholar] [CrossRef]
- Roxburgh, H.; Hampshire, K.; Tilley, E.A.; Oliver, D.M.; Quilliam, R.S. Being shown samples of composted, granulated faecal sludge strongly influences acceptability of its use in peri-urban subsistence agriculture. Resour. Conserv. Recycl. X 2020, 7, 100041. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Roy, M.; McDonald, L.M.; Emendack, Y. Reflections on farmers’ social networks: A means for sustainable agricultural development? Environ. Dev. Sustain. 2021, 23, 2973–3008. [Google Scholar] [CrossRef]
Indicator | N | Unit | User 1 | Non-User 1 |
---|---|---|---|---|
Place | ||||
● Nilgiris | 100 | % | 83 | 83 |
● Devanahalli | 20 | % | 17 | 17 |
Age | 120 | Years (average) 2 | 47 ± 12 | 46 ± 13 |
Gender | ||||
● Female | 19 | % | 15 | 17 |
● Male | 101 | % | 85 | 83 |
Land size | 120 | Acres (average) 2 | 2.13 ± 2.04 | 2.18 ± 2.74 |
Property | ||||
● Own | 74 | Valid % | 63 | 62 |
● Rented | 36 | Valid % | 27 | 33 |
● Both | 9 | Valid % | 10 | 5 |
● No indication | 1 | Frequency | 1 | 0 |
Irrigation system | ||||
● Sprinkler/butterfly | 85 | Valid % | 78 | 75 |
● Manual | 14 | Valid % | 15 | 11 |
● Drip irrigation | 12 | Valid % | 7 | 14 |
● No indication | 1 | Frequency | 5 | 4 |
Water source | ||||
● Own well/pond | 52 | Valid % | 52 | 50 |
● River/stream | 29 | Valid % | 26 | 31 |
● Shared/public well/pond | 17 | Valid % | 18 | 15 |
● Other | 4 | Valid % | 4 | 4 |
● No indication | 1 | Frequency | 10 | 8 |
Annual income 3 | ||||
● <910 $ | 42 | Valid % | 39 | 32 |
● 910–1560$ | 31 | Valid % | 29 | 24 |
● >1560 $ | 45 | Valid % | 32 | 44 |
● No indication | 2 | Frequency | 1 | 1 |
Distance to the closest market | 120 | km (average) 2 | 41.88 ± 15.98 | 42.34 ± 14.9 |
Usage of middlemen | ||||
● Yes | 41 | Valid % | 39 | 34 |
● No | 54 | Valid % | 43 | 54 |
● Both | 17 | Valid % | 18 | 13 |
● No indication | 8 | Frequency | 4 | 4 |
Co-compost (average numbers)2 | ||||
● Years of usage | 120 | Years (average) 2 | 1.94 ± 1.09 | 0.00 |
● Price 3 | 120 | $/kg (average) 2 | 0.07 ± 0.007 | 0.07 ± 0.008 |
● Distance for pick up | 120 | km (average) 2 | 5.84 ± 5.91 | 4.94 ± 5.05 |
Indicator | N (User) | N (Non-User) | Unit 1 | User | Non-User | Eta-Coefficient |
---|---|---|---|---|---|---|
Carrots | 48 | 52 | t/acre | 13.52 ± 7.76 | 11.41 ± 6.27 | 0.150 |
Potato | 31 | 39 | t/acre | 9.15 ± 6.10 | 7.17 ± 4.10 | 0.193 |
Beetroot | 27 | 30 | t/acre | 11.76 ± 8.14 | 9.64 ± 7.48 | 0.137 |
Garlic | 22 | 22 | t/acre | 6.15 ± 3.68 | 6.42 ± 3.88 | 0.037 |
Unit | User | Non-User | Eta-Coefficient | |||||
---|---|---|---|---|---|---|---|---|
N | Mean | SD | N | Mean | SD | |||
Own compost | t (acre ∙season)−1 | 11 | 2.24 | 3.86 | 8 | 2.28 | 4.17 | 0.016 |
Co-compost | t (acre ∙season)−1 | 43 | 3.3 | 6.7 | ||||
Mushroom waste | t (acre ∙season)−1 | 22 | 9.22 | 10.36 | 30 | 13.08 | 16.63 | 0.134 |
Farmyard manure | t (acre ∙season)−1 | 34 | 13.82 | 16.8 | 36 | 12.51 | 11.61 | 0.046 |
Chicken waste | t (acre ∙season)−1 | 18 | 8.66 | 11.19 | 20 | 12.66 | 13.37 | 0.163 |
Plant charcoal | kg (month)−1 | 17 | 26.53 | 24.76 | 18 | 18.54 | 24.28 | 0.165 |
Chemical fertilizer | ||||||||
● Before co-compost usage | t (acre ∙year)−1 | 46 | 1.42 | 2.1 | 53 | 1.57 | 5.42 | 0.019 |
● After co-compost usage | t (acre ∙year)−1 | 35 | 0.9 | 1.35 | ||||
● % reduction 1 | % | 33 | 44.21 | 15.91 | ||||
Chemical spray | ||||||||
● Before co-compost usage | L (acre ∙year)−1 | 26 | 8.16 | 12.88 | 29 | 8.35 | 13.62 | 0.007 |
● After co-compost usage | t (acre ∙year)−1 | 4 | 6.63 | 9.03 | ||||
● % reduction 1 | % | 11 | 35.45 | 21.27 | ||||
Water usage reduction in dry season 1 | % | 22 | 30.3 | 19.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fendel, V.; Kranert, M.; Maurer, C.; Garcés-Sánchez, G.; Huang, J.; Ramakrishna, G. The Impact of Using Co-Compost on Resource Management and Resilience of Smallholder Agriculture in South India. Environments 2022, 9, 143. https://doi.org/10.3390/environments9110143
Fendel V, Kranert M, Maurer C, Garcés-Sánchez G, Huang J, Ramakrishna G. The Impact of Using Co-Compost on Resource Management and Resilience of Smallholder Agriculture in South India. Environments. 2022; 9(11):143. https://doi.org/10.3390/environments9110143
Chicago/Turabian StyleFendel, Veronika, Martin Kranert, Claudia Maurer, Gabriela Garcés-Sánchez, Jingjing Huang, and Girija Ramakrishna. 2022. "The Impact of Using Co-Compost on Resource Management and Resilience of Smallholder Agriculture in South India" Environments 9, no. 11: 143. https://doi.org/10.3390/environments9110143
APA StyleFendel, V., Kranert, M., Maurer, C., Garcés-Sánchez, G., Huang, J., & Ramakrishna, G. (2022). The Impact of Using Co-Compost on Resource Management and Resilience of Smallholder Agriculture in South India. Environments, 9(11), 143. https://doi.org/10.3390/environments9110143