The Spatial and Temporal Variability of the Effects of Agricultural Practices on the Environment
Abstract
:1. Introduction
- RQ1: How can AEIs be aggregated to analyse the interrelations between agricultural practices and environmental impacts?
- RQ2: What are the information needs of farmers for the adoption of sustainable agricultural methods?
- RQ3: How can policymakers define different incentives that could push farmers to adopt more sustainable agricultural production methods?
2. Materials and Methods
2.1. A Possible Aggregation of AEIs
- (1)
- Farm management practices (FMPs);
- (2)
- Agricultural production systems (APSs);
- (3)
- Pressures and risks (PRs);
- (4)
- Ecosystem (E).
2.2. The Methodology
3. Results
3.1. The Descriptive Statistical Measures of Selected AEIs
3.2. FA: Country Indicators and Agro-Environment Dimensions
3.3. Which Countries Have the Greatest Similarities? A Discussion of the HCA
4. Discussion and the Environmental Policy Implications
Funding
Conflicts of Interest
Appendix A. Cluster Analysis
References
- EEA. Food in a Green Light. A System Approach to Sustainable Food; Environmental, European Environment Agency: Copenhagen, Denmark, 2017.
- EEA. Down to Earth: Soil Degradation and Sustainable Development in Europe; Environmental, European Environment Agency: Copenhagen, Denmark, 2000; Volume 16, pp. 1–32.
- Girardin, P. Indicators: Tools to evaluate the environmental impacts of farming systems. J. Sustain. Agric. 2012, 13, 5–21. [Google Scholar] [CrossRef]
- Crabtree, J.R.; Brouwer, F.M. Discussion and conclusions. In Environmental Indicators and Agricultural Policy; Brouwer, F.M., Crabtree, J.R., Eds.; CAB International: Wallingford, UK, 1999; pp. 279–285. [Google Scholar]
- OECD. Environmental Indicators for Agriculture. Methods and Results; OECD Publications: Paris, France, 2001; Volume 3, p. 409. [Google Scholar]
- Mitchell, G.; May, A.; Mc Donald, A. PICABUE: A methodological framework for the development of indicators of sustainable development. Int. J. Sustain. Dev. World 1995, 2, 104–123. [Google Scholar] [CrossRef]
- Bossel, H. Assessing viability and sustainability: A systems-based approach for deriving comprehensive indicator sets. Conserv. Ecol. 2001, 5, 12. [Google Scholar] [CrossRef]
- Jollands, N. How to aggregate sustainable development indicators: A proposed framework and its application. Int. J. Agric. Resour. Gov. Ecol. 2006, 5, 18–34. [Google Scholar] [CrossRef]
- Cloquell-Ballester, V.A.; Cloquell-Ballester, V.A.; Monterde-Diaz, R.; Santamarina-Siurana, M.C. Indicators validation for the improvement of environmental and social impact quantitative assessment, environmental. Impact Assess. Rev. Environ. 2006, 26, 79–105. [Google Scholar] [CrossRef]
- MAFF (Ministry of Agriculture, Fisheries, Food). Towards Sustainable Agriculture (A Pilot Set of Indicators); MAFF Publication: London, UK, 2000.
- Wascher, D.W. Agri-environmental Indicators for Sustainable Agriculture in Europe; European Centre for Nature Conservation: Tilburg, The Netherlands, 2000. [Google Scholar]
- Chen, Q.; Sipiläinen, T.; Sumelius, J. Assessment of agri-environmental externalities at regional levels in Finland. Sustainability 2014, 6, 3171–3191. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Panagos, P.; Montanarella, L. New insights into the geography and modelling of wind erosion in the European agricultural land. Application of a spatially explicit indicator of land susceptibility to wind erosion. Sustainability 2015, 7, 8823–8836. [Google Scholar] [CrossRef] [Green Version]
- Nevado-Peña, D.; López-Ruiz, V.-R.; Alfaro-Navarro, J.-L. The effects of environmental and social dimensions of sustainability in response to the economic crisis of European cities. Sustainability 2015, 7, 8255–8269. [Google Scholar] [CrossRef] [Green Version]
- Peano, C.; Tecco, N.; Dansero, E.; Girgenti, V.; Sottile, F. Evaluating the sustainability in complex agri-food systems: The SAEMETH framework. Sustainability 2015, 7, 6721–6741. [Google Scholar] [CrossRef] [Green Version]
- Janković Šoja, S.; Anokić, A.; Bucalo Jelić, D.; Maletić, R. Ranking EU countries according to their level of success in achieving the objectives of the sustainable development strategy. Sustainability 2016, 8, 306. [Google Scholar] [CrossRef] [Green Version]
- Rigby, D.; Woodhouse, P.; Young, T.; Burton, M. Constructing a farm level indicator of sustainable agriculture practice. Ecol. Econ. 2001, 39, 463–478. [Google Scholar] [CrossRef]
- Van der Werf, H.M.G.; Petit, J. Evaluation of the environmental impact of agriculture at the farm level: A comparison and analysis of 12 indicator-based methods. Agric. Ecosyst. Environ. 2002, 93, 131–145. [Google Scholar] [CrossRef]
- Yli-Viikari, A.; Hietala-Koivu, R.; Huusela-Veistola, E.; Hyvönen, T.; Perälä, P.; Turtola, E. Evaluating agri-environmental indicators (AEIs)-Use and limitations of international indicators at national level. Ecol. Econ. 2007, 7, 150–163. [Google Scholar] [CrossRef]
- Engström, R.; Nilsson, M.; Finnveden, G. Which environmental problems get policy attention? Examining energy and agricultural sector policies in Sweden. Environ. Impact Assess. Rev. 2008, 28, 241–255. [Google Scholar]
- Beckmann, V.; Eggers, J.; Mettepenningen, E. Deciding how to decide on agri-environmental schemes: The political economy of subsidiarity, decentralisation and participation in the European Union. J. Environ. Plan. Manag. 2009, 52, 689–716. [Google Scholar] [CrossRef]
- Gottero, E.; Cassatella, C. Landscape indicators for rural development policies. Application of a core set in the case study of Piedmont Region. Environ. Impact Assess. Rev. 2017, 65, 75–85. [Google Scholar] [CrossRef]
- Scherer, L.A.; Verburg, P.H.; Schulp, C.J.E. Opportunities for sustainable intensification in European agriculture. Glob. Environ. Chang. 2018, 48, 43–55. [Google Scholar] [CrossRef]
- Payraudeau, S.; van der Werf, H.M.G. Environmental impact assessment for a farming region: A review of methods. Agric. Ecosyst. Environ. 2005, 107, 1–19. [Google Scholar] [CrossRef]
- Dent, J.B.; Edwards-Jones, G.; McGregor, M.J. Simulation of ecological, social and economic factors in agricultural systems. Agric. Syst. 1995, 49, 337–351. [Google Scholar] [CrossRef]
- Gallopin, G.C. Indicators and their use: Information for decision-making. In Sustainability Indicators: A Report on the Project on Indicators of Sustainable Development; Billhartz, S.B., Matravers, R., Eds.; John Wiley and Sons: Chichester, UK, 1997; pp. 13–27. [Google Scholar]
- Molden, D.J.; Sakthivadivel, R.; Perry, C.J.; de Fraiture, C.; Kloezen, W.H. Indicators for Comparing Performance of Irrigated Agricultural Systems; IWMI Research Report; International Water Management Inst.: Colombo, Sri Lanka, 1998; Volume 20, p. 26. [Google Scholar]
- Deller, S.; Tsai, T.; Marcouiller, D.; English, D. The role of amenities and quality of life in rural economic growth. Am. J. Agric. Econ. 2001, 83, 352–365. [Google Scholar] [CrossRef]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics; Pearson/Allyn and Bacon: Boston, MA, USA, 2005. [Google Scholar]
- Madu, I. The underlying factors of rural development patterns in the Nsukka region of Southeastern Nigeria. J. Rural Commun. Dev. 2007, 2, 110–122. [Google Scholar]
- Hossain, M.; Begum, E.; Papadopoulou, E. Factors of rural development driver in Southeastern Bangladesh. Am. J. Rural Dev. 2015, 3, 3440. [Google Scholar]
- Fanelli, R.M. The interactions between the structure of the food supply and the impact of livestock production on the environment. A multivariate analysis for understanding the differences and the analogies across European union countries. Calitatea 2018, 19, 131–139. [Google Scholar]
- Fanelli, R.M. The (un)sustainability of the land use practices and agricultural production in EU countries. Int. J. Environ. Stud. 2019, 2, 273–294. [Google Scholar] [CrossRef]
- European Commission, Eurostat. Agri-environmental Indicators. 2018. Available online: http://ec.europa.eu/eurostat/web/agri-environmental-indicators/indicators (accessed on 12 June 2019).
- Felici, F. Tools and Methods for Sustainable Development of the Rural Territories. Rural Innova Interreg IIIC South; IRPET: Firenze, Italy, 2006; Available online: http://www.irpet.it/index.php?page=pubblicazione&pubblicazione_id=148.
- Simoncini, R. Definition of a common European analytical framework for the development of local agri-environmental programmes for biodiversity and landscape conservation (AEMBAC). In 5th Framework Contract Ref: QLRT-1999–31666; Work package 6-Report; IUCN-ERO: Brussels, Belgium, 2002; unpublished. [Google Scholar]
- Myers, J.H.; Mullet, G.M. Managerial Applications of Multivariate Analysis in Marketing; American Marketing Association: Chicago, IL, USA, 2003. [Google Scholar]
- Balicki, A. Statystyczna Analiza Wielowymiarowa i jej Zastosowania Społeczno-Ekonomiczne; Wydawnictwo Uniwersytetu Gdańskiego: Gdańsk, Poland, 2009. [Google Scholar]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis; Edward Arnold: London, UK, 2001. [Google Scholar]
- Fanelli, R.M. Rural small and medium enterprises development in Molise (Italy). Eur. Countrys. 2018, 10, 566–589. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, M.; Coppola, A.; Chinnici, G.; Di Vita, G.; Pappalardo, G. Agricultural systems in the European Union: An analysis of regional differences. New Medit. 2013, 12, 28–34. [Google Scholar]
- FAO. The State of Food and Agriculture. Food Aid for Food Security; FAO Publications: Rome, Italy, 2006; pp. 1–168. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis; Prentice Hall International: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Pérez-Soba, M.; Elbersen, B.; Kempen, M.; Braat, L.; Staristky, I.; Wijngaart, R.; van der Kaphengst, T.; Andersen, E.; Germer, L.; Smith, L.; et al. Agricultural Biomass as Provisioning Ecosystem Service: Quantification of Energy Flows; EUR 27538 EN; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Malek, Ž.; Verburg, P. Mediterranean land systems: Representing diversity and intensity of complex land systems in a dynamic region. Landsc. Urban Plan. 2017, 165, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Levers, C.; Butsic, V.; Verburg, P.H.; Müller, D.; Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 2016, 58, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Condron, L.M.; Cameron, K.C.; Di, H.J.; Clough, T.J.; Forbes, E.A.; McLaren, R.G.; Silva, R.G. A comparison of soil and environmental quality under organic and conventional farming systems in New Zealand. J. Agric. Res. 2000, 43, 443–466. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Lewell, C.; Meusburger, K.; Brodbeck, M.; Bänninger, D. Methods to describe and predict soil erosion in mountain regions. Landsc. Urban Plan. 2008, 88, 46–53. [Google Scholar] [CrossRef]
- Muhammed, S.E.; Coleman, K.; Wu, L.; Tipping, E.; Whitmore, A.P. Impact of two centuries of intensive agriculture on soil carbon, nitrogen and phosphorus cycling in the UK. Sci. Total Environ. 2018, 634, 1486–1504. [Google Scholar] [CrossRef]
- Sanders, M.; Westerink, J. Op Weg Naar Een Natuurinclusieve Duurzame Landbouw; Alterra Wageningen UR: Wageningen, The Netherlands, 2015. [Google Scholar]
- Upadhyay, B.M.; Young, D.L.; Wang, H.H.; Wandschneider, P. How do farmers who adopt multiple conservation practices differ from their neighbors? In Proceedings of the AAEA and WAEA, Annual Meeting, Long Beach, CA, USA, 28–31 July 2002; p. 21. [Google Scholar]
- Läpple, D. Adoption and abandonment of organic farming: An empirical investigation of the Irish drystock sector. J. Agric. Econ. 2010, 61, 697–714. [Google Scholar] [CrossRef]
- Yiridoe, E.K.; Atari, D.O.A.; Gordon, R.; Smale, S. Factors influencing participation in the Nova Scotia environmental farm plan program. Land Use Policy 2010, 27, 1097–1106. [Google Scholar] [CrossRef]
- Nyanga, P.H. Factors influencing adoption and area under conservation agriculture: A mixed methods approach. Sustain. Agric. Res. 2012, 1, 27. [Google Scholar] [CrossRef] [Green Version]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of multiple sustainable agricultural practices in rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Serrao, A. A comparison of agricultural productivity among European Countries. New Medit. 2003, 1, 14–20. [Google Scholar]
- Nowak, A.; Krukowski, A.; Różańska-Boczula, M. Assessment of sustainability in agriculture of the European union countries. Agronomy 2019, 9, 890. [Google Scholar] [CrossRef] [Green Version]
Block | Definition | Unit | Year |
---|---|---|---|
FMP1 | Farm managers with full agricultural training | Total number of holding | Var% 2013–2005 |
FMP2 | Farm manager age | Total number of holding | Var% 2013–2005 |
FMP3 | Consumption of nitrogen | Tonne | Var% 2016–2007 |
FMP4 | Consumption of phosphorus | Tonne | Var% 2016–2007 |
FMP5 | Sales of fungicides and bactericides | Kg of active ingredient | Var% 2016–2011 |
FMP6 | Sales of herbicides, haulm destructors, and moss killers | Kg of active ingredient | Var% 2016–2011 |
FMP7 | Sales of insecticides and acaricides | Kg of active ingredient | Var% 2016–2011 |
FMP8 | Final energy consumption by agriculture/forestry per hectare of UAA | Kg OE/ha | Var% 2016–2007 |
APS1 | Area under organic farming | %/UAA | 2016 |
APS2 | Irrigated area | % irrigated area/irrigable area | 2013 |
APS3 | Water abstraction for agriculture | million cubic metres | 2015 |
APS4 | Estimated soil erosion by water | % of total | 2012 |
APS5 | Estimated soil erosion by water | square km | Var% 2012–2000 |
APS6 | Arable land | % of UAA | 2013 |
APS7 | Permanent grassland | % of UAA | 2013 |
APS8 | Permanent crops | % of UAA | 2013 |
APS9 | Bovine | % bovine/LSU | 2013 |
APS10 | Horses, asses, mules and hinnies | %/LSU | 2013 |
APS11 | Live swine domestic species | %/LSU | 2013 |
APS12 | Live sheep | %/LSU | 2013 |
APS13 | Live goats | %/LSU | 2013 |
APS14 | Live poultry | %/LSU | 2013 |
PR1 | Gross nutrient balance (phosphorus) | kg per hectare | Var% 2014–2004 |
PR2 | Gross nutrient balance (nutrient) | kg per hectare | Var% 2014–2004 |
RR3 | Ammonia emissions from agriculture | % of total emissions | 2015 |
PR4 | Greenhouse gas emissions from agriculture | % of total | 2015 |
E1 | Common farmland bird index [env_bio2] | base = 2000 | 2014 |
E2 | Protected areas of land | % | 2016 |
Variable | Min | Max | Std. Dev. | CV | Skewness | Kurtosis |
---|---|---|---|---|---|---|
FMP1 | −76.18 | 300 | 75.50 | 6.19 | 0.0000 | 0.0003 |
FMP2 | −74.2 | 1.17 | 19.12 | −5.26 | 0.9909 | 0.9588 |
FMP3 | −44.56 | 105.64 | 28.80 | 3.18 | 0.0022 | 0.0045 |
FMP4 | −74.58 | 178.87 | 51.29 | −9.19 | 0.0004 | 0.0016 |
FMP5 | −45.13 | 1845.1 | 347.76 | 4.37 | 0.0000 | 0.0000 |
FMP6 | −56.77 | 69.19 | 22.59 | −7.31 | 0.0341 | 0.0084 |
FMP7 | −74.5 | 1666.56 | 341.79 | 3.36 | 0.0000 | 0.0000 |
FMP8 | −79.35 | 75.27 | 30.03 | 74.87 | 0.6062 | 0.0890 |
APS1 | 0.21 | 21.25 | 5.45 | 0.70 | 0.0334 | 0.5807 |
APS2 | 0 | 100 | 29.99 | 0.66 | 0.6782 | 0.1556 |
APS3 | 0 | 8282.54 | 1575.86 | 3.76 | 0.0000 | 0.0000 |
APS4 | 0 | 24.58 | 6.31 | 1.26 | 0.0007 | 0.0250 |
APS5 | −86.54 | 62.58 | 27.50 | −1.08 | 0.0865 | 0.0158 |
APS6 | 21 | 98.5 | 18.91 | 0.30 | 0.4439 | 0.8577 |
APS7 | 0 | 79 | 18.81 | 0.59 | 0.4385 | 0.5446 |
APS8 | 0 | 25 | 7.26 | 1.38 | 0.0015 | 0.1628 |
APS9 | 20.8 | 84 | 16.68 | 0.34 | 0.7935 | 0.7783 |
APS10 | 0.3 | 7.7 | 1.53 | 0.71 | 0.0000 | 0.0011 |
APS11 | 6.4 | 65.7 | 12.97 | 0.50 | 0.0302 | 0.0744 |
APS12 | 0.3 | 40.5 | 8.93 | 1.29 | 0.0000 | 0.0006 |
APS13 | 0 | 17.1 | 3.59 | 2.32 | 0.0000 | 0.0000 |
APS14 | 1 | 36.5 | 7.12 | 0.50 | 0.0834 | 0.0314 |
PR1 | −100 | 100 | 55.92 | −3.21 | 0.1454 | 0.6588 |
PR2 | −40.91 | 115.79 | 38.40 | 8.89 | 0.0007 | 0.0192 |
PR3 | 78.5 | 99.5 | 6.09 | 0.07 | 0.1219 | 0.5158 |
PR4 | 2.6 | 30.8 | 6.29 | 0.56 | 0.0011 | 0.0279 |
E1 | 0 | 116.3 | 42.20 | 0.90 | 0.7179 | 0.0000 |
E2 | 8 | 38 | 8.51 | 0.43 | 0.0791 | 0.6709 |
Factor | Eigenvalue | Difference | Proportion | Cumulative |
---|---|---|---|---|
Factor1 | 5.29 | 1.39 | 19.03 | 19.03 |
Factor2 | 3.91 | 0.90 | 14.03 | 33.06 |
Factor3 | 3.01 | 0.58 | 10.8 | 43.86 |
Factor4 | 2.43 | 0.22 | 8.73 | 52.59 |
Factor5 | 2.21 | 0.49 | 7.95 | 60.55 |
Factor6 | 1.73 | 0.18 | 6.2 | 66.75 |
Factor7 | 1.54 | 0.27 | 5.54 | 72.29 |
Factor8 | 1.28 | 0.05 | 4.58 | 76.88 |
Factor9 | 1.23 | 0.18 | 4.41 | 81.29 |
Factor10 | 1.04 | 0.17 | 3.75 | 85.04 |
Factor11 | 0.88 | 0.21 | 3.15 | 88.19 |
Factor12 | 0.67 | 0.13 | 2.41 | 90.6 |
Factor13 | 0.54 | 0.00 | 1.94 | 92.54 |
Factor14 | 0.53 | 0.08 | 1.93 | 94.46 |
Factor15 | 0.46 | 0.08 | 1.64 | 96.1 |
Factor16 | 0.38 | 0.12 | 1.35 | 97.45 |
Factor17 | 0.26 | 0.11 | 0.93 | 98.39 |
Factor18 | 0.15 | 0.05 | 0.53 | 98.92 |
Factor19 | 0.10 | 0.02 | 0.37 | 99.29 |
Factor20 | 0.09 | 0.03 | 0.31 | 99.6 |
Factor21 | 0.06 | 0.03 | 0.21 | 99.81 |
Factor22 | 0.03 | 0.01 | 0.11 | 99.92 |
Factor23 | 0.02 | 0.02 | 0.08 | 100 |
Factor24 | 0.00 | 0.00 | 0.01 | 100 |
Factor25 | 0.00 | 0.00 | 0.00 | 100 |
Factor26 | −0.00 | 0.00 | 0.01 | 100 |
Factor27 | −0.00 | 0.00 | 0.02 | 100 |
Factor28 | −0.00 | 0.00 | 0.03 | 100 |
Variable | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 | Communalities |
---|---|---|---|---|---|---|
FMP1 | 0.214 | |||||
FMP2 | 0.481 | −0.479 | 0.750 | |||
FMP3 | 0.764 | 0.500 | ||||
FMP4 | 0.837 | 0.972 | ||||
FMP5 | −0.995 | |||||
FMP6 | 0.582 | 0.776 | ||||
FMP7 | 0.708 | |||||
FMP8 | 0.507 | −0.236 | ||||
APS1 | 0.454 | 0.535 | ||||
APS2 | 0.464 | 0.327 | ||||
APS3 | 0.689 | 0.541 | 1.105 | |||
APS4 | 0.541 | 1.412 | ||||
APS5 | 0.614 | 1.987 | ||||
APS6 | −0.539 | −0.670 | −0.975 | |||
APS7 | 0.861 | 0.891 | ||||
APS8 | 0.712 | 0.259 | ||||
APS9 | 0.769 | 0.485 | ||||
APS10 | 0.644 | 0.249 | ||||
APS11 | −0.686 | −1.873 | ||||
APS12 | 0.772 | 0.774 | ||||
APS13 | 0.775 | 0.474 | 0.784 | |||
APS14 | −0.510 | 0.849 | ||||
PR1 | 0.597 | 0.926 | ||||
PR2 | 0.699 | 1.521 | ||||
PR3 | 1.417 | |||||
PR4 | 0.471 | 0.458 | ||||
E1 | −0.689 | −0.115 | ||||
E2 | 0.597 | 0.870 |
Cluster | FMP1 | FMP2 | FMP3 | FMP4 | FMP5 | FMP6 | FMP7 |
---|---|---|---|---|---|---|---|
Cluster 1 | 27.38 | −36.71 | 22.17 | 14.48 | 23.88 | −5.27 | 34.90 |
Cluster 2 | −6.69 | −34.22 | 0.33 | −16.87 | 277.99 | 3.75 | 327.12 |
Cluster 3 | 0.49 | −38.83 | −7.70 | −29.90 | 8.04 | −2.22 | 8.23 |
Cluster 4 | 9.74 | −36.92 | 1.33 | −20.37 | −4.56 | −7.16 | 19.46 |
Mean 28 EU countries | 12.20 | −36.36 | 9.04 | −5.58 | 79.62 | −3.09 | 101.79 |
Cluster | FMP8 | APS1 | APS2 | APS3 | APS4 | APS5 | APS6 |
Cluster 1 | 5.83 | 6.00 | 48.58 | 280.50 | 4.51 | −19.42 | 62.53 |
Cluster 2 | −13.64 | 11.05 | 41.04 | 1183.22 | 5.63 | −33.31 | 64.29 |
Cluster 3 | −3.47 | 9.51 | 35.42 | 18.03 | 5.52 | −29.46 | 58.60 |
Cluster 4 | 7.86 | 6.61 | 49.24 | 5.69 | 4.99 | −26.66 | 61.13 |
Mean 28 EU countries | 0.40 | 7.77 | 45.43 | 419.17 | 5.00 | −25.52 | 62.25 |
Cluster | APS7 | APS8 | APS9 | APS10 | APS11 | APS12 | APS13 |
Cluster 1 | 31.99 | 4.50 | 53.50 | 2.43 | 23.95 | 5.53 | 1.53 |
Cluster 2 | 30.23 | 5.44 | 49.54 | 2.17 | 21.41 | 11.47 | 2.63 |
Cluster 3 | 33.67 | 7.67 | 41.60 | 1.53 | 31.80 | 7.17 | 0.90 |
Cluster 4 | 33.37 | 5.35 | 44.08 | 1.92 | 31.47 | 4.37 | 0.63 |
Mean 28 EU countries | 32.03 | 5.26 | 49.22 | 2.16 | 25.77 | 6.94 | 1.55 |
Cluster | APS14 | PR1 | PR2 | PR3 | PR4 | E1 | E2 |
Cluster 1 | 12.93 | −14.16 | 7.75 | 92.77 | 13.16 | 49.22 | 18.67 |
Cluster 2 | 12.74 | −14.69 | −6.88 | 91.07 | 8.81 | 56.17 | 16.43 |
Cluster 3 | 16.93 | −9.09 | −0.08 | 90.67 | 9.20 | 27.07 | 26.00 |
Cluster 4 | 17.50 | −31.34 | 12.72 | 89.63 | 11.18 | 40.73 | 21.83 |
Mean 28 EU countries | 14.29 | −17.43 | 4.32 | 91.45 | 11.23 | 46.76 | 19.57 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli, R.M. The Spatial and Temporal Variability of the Effects of Agricultural Practices on the Environment. Environments 2020, 7, 33. https://doi.org/10.3390/environments7040033
Fanelli RM. The Spatial and Temporal Variability of the Effects of Agricultural Practices on the Environment. Environments. 2020; 7(4):33. https://doi.org/10.3390/environments7040033
Chicago/Turabian StyleFanelli, Rosa Maria. 2020. "The Spatial and Temporal Variability of the Effects of Agricultural Practices on the Environment" Environments 7, no. 4: 33. https://doi.org/10.3390/environments7040033
APA StyleFanelli, R. M. (2020). The Spatial and Temporal Variability of the Effects of Agricultural Practices on the Environment. Environments, 7(4), 33. https://doi.org/10.3390/environments7040033