Mapping of GIS-Land Use Suitability in the Rural–Urban Continuum between Ar Riyadh and Al Kharj Cities, KSA Based on the Integrating GIS Multi Criteria Decision Analysis and Analytic Hierarchy Process
Abstract
:1. Introduction
2. Area of Study
3. Methodology and Data Processing
3.1. The Data Input for MCDA
3.2. Criteria Definition
3.3. Reclassification of Data
3.4. Criteria Weighing
3.4.1. The First Stage: Giving the Criteria Preferences Values Based on Thomas Saaty Table
3.4.2. The Second Stage: The Percentage of the Preference Value for Each Parameter
3.4.3. The Third Stage: Consistency Verification Index for Calculating the Consistency Mathematically
4. Results and Discussion
4.1. Planning and Determining the Optimum Locations for Constructing New Urban Areas in the Rural–Urban Continuum (Ar Riyadh–Al Kharj)
4.1.1. The Spatial Suitability of the “Slopes”
4.1.2. The Spatial Suitability of “Streams”
4.1.3. The Spatial Suitability of “Urban Areas”
4.1.4. The Spatial Suitability of “Roads Networks”
4.1.5. The Spatial Suitability of “Railways”
4.1.6. The Spatial Suitability of “Agriculture Areas”
4.1.7. The Spatial Suitability of “Soil Type”
4.1.8. The Spatial Suitability of “Geology”
4.1.9. The Spatial Suitability of “Crevasses”
4.1.10. The Spatial Suitability of “Wells”
4.1.11. The Spatial Suitability of “Environmental Areas”
4.1.12. The Spatial Suitability of “Power Lines”
4.2. Analysis of the Suitability Maps for Constructing New Urban Areas in ArRiyadh–Al kharj Rural–UrbanContinuum
4.2.1. Areas with Very High Spatial Suitability (66–86% Suitability)
4.2.2. Areas with High Spatial Suitability (62–66%)
4.2.3. Areas with Moderate Spatial Suitability (57–62%)
4.2.4. Areas with Low Spatial Suitability (51–57%)
4.2.5. Areas with Very Low Spatial Suitability (32–51%)
5. Recommendations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNDESA/PD. World Population Prospects: The 2012 Revision, Highlights and Advance Tables. Available online: https://esa.un.org/unpd/wpp/publications/Files/WPP2012_HIGHLIGHTS.pdf (accessed on 20 September 2019).
- UNDESA/PD. World Urbanization Prospects: The 2014 Revision, Highlights; (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2014. [Google Scholar]
- Cobbinah, B.; Erdiaw-Kwasie, O.; Amoateng, P. Rethinking sustainable development within the framework of poverty and urbanization in developing countries. Environ. Dev. 2015, 13, 18–32. [Google Scholar] [CrossRef]
- UN-Habitat. Prosperity of Cities. In State of the World Cities 2012/2013, 1st ed.; UN-Habitat: Nairobi, Kenya, 2012; p. 152. Available online: https://sustainabledevelopment.un.org/content/documents/745habitat.pdf (accessed on 20 September 2019).
- Hamin, M.; Gurran, N. Urban form and climate change: Balancing adaptation and mitigation in the USA and Australia. Habitat Int. 2009, 33, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Cobbinah, B.; Erdiaw-Kwasie, O.; Amoateng, P. Africa’s urbanization: Implications for sustainable development. Cities 2015, 47, 62–72. [Google Scholar] [CrossRef]
- Ravetz, J.; Christian, F.; Nielsen, S. The dynamics of peri-urbanization. In Peri-Urban Futures Scenarios and Models for Land Use Change in Europe; Nilsson, K., Pauleit, S., Bell, S., Aalbers, C., Nielsen, T.S., Eds.; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013; pp. 13–44. [Google Scholar]
- Mbiba, B.; Huchzermeyer, M. Contentious development: Peri-urban studies in sub-Saharan Africa. Prog. Dev. Stud. 2002, 2, 113–131. [Google Scholar] [CrossRef]
- Simon, D.; McGregor, D.; Nsiah-Gyabaah, K. The changing urban-rural interface of African cities: Definitional issues and an application to Kumasi, Ghana. Environ. Urban. 2004, 16, 235–248. [Google Scholar] [CrossRef]
- Kombe, J. Land use dynamics in peri-urban areas and their implications on the urban growth and form: The case of Dar es Salaam, Tanzania. Habitat Int. 2005, 29, 113–135. [Google Scholar] [CrossRef]
- Thuo, A.D.M. Community and Social Responses to Land Use Transformations in the Nairobi Rural-Urban Fringe, Kenya. Field Actions Sci. Rep. J. Field Actions Urban Agric. 2010. Available online: http://journals.openedition.org/factsreports/435 (accessed on 25 September 2019).
- Tajbakhsh, M.; Memarian, H.; Shahrokhi, H. Analyzing and modeling urban sprawl and land use changes in a developing city using a CA-Markovian approach. Glob. J. Environ. Sci. Manag. 2016, 2, 397–410. [Google Scholar] [CrossRef]
- Mandere, N.; Ness, B.; Anderberg, S. Peri-urban development, livelihood change and household income: A case study of peri-urban Nyahururu, Kenya. J. Agric. Ext. Rural Dev. 2010, 2, 73–83. [Google Scholar]
- Acheampong, A.; Anokye, A. Understanding households’ residential location choice in Kumasi’s peri-urban settlements and the implications for sustainable urban growth. Res. Humanit. Soc. Sci. 2013, 3, 60–70. [Google Scholar]
- Laquinta, L.; Drescher, W. Defining the peri-urban: Rural-urban linkages and institutional connections. Land Reform 2000, 6, 1–28. [Google Scholar]
- Akrofi, O.; Whittal, J. Land for peri-urban infrastructure in customary areas: A case study of Kumasi, Ghana. In Proceedings of the FIG Working Week 2011 Bridging the Gap between Cultures, Marrakech, Morocco, 18–22 May 2011; pp. 1–16. [Google Scholar] [CrossRef]
- Amoateng, P.; Cobbinah, B.; Owusu-Adade, K. Managing physical development in peri-urban areas of kumasi, Ghana: A case of Abuakwa. J. Urban Environ. Eng. 2013, 7, 96–109. [Google Scholar] [CrossRef]
- McGregor, M.; Adam-Bradford, A.; Thompson, A.; Simon, D. Resource management and agriculture in the peri-urban interface of Kumasi, Ghana: Problems and prospects. Singap. J. Trop. Geogr. 2011, 32, 382–398. [Google Scholar] [CrossRef]
- Kazil, M.; Ali, M. Evaluation of land suitability for urban land use planning: Case study of Dhaka city. Trans. GIS 2015, 20, 20–37. [Google Scholar] [CrossRef]
- De la Rosa, D.; Van Diepen, A. Land Use, Land Cover and Soil Sciences. Qualitative and Quantitative Land Evaluations (Agro-Ecological Land Evaluation); Encyclopedia of Life Support Cultural Organization: Oxford, UK, 2002; Volume 2, pp. 1–8. [Google Scholar]
- Steiner, F.; McSherry, L.; Cohen, J. Land suitability analysis for the Upper Gila River Watershed. Landsc. Urban Plan. 2000, 50, 199–214. [Google Scholar] [CrossRef]
- Collin, L.; Melloul, J. Combined land-use and environmental factors for sustainable groundwater management. Urban Water 2001, 3, 229–237. [Google Scholar] [CrossRef]
- Shearer, S.; Xiang, N. Representing multiple voices in landscape planning: A land suitability evaluation study for a park land-banking program in Concord, North Carolina, USA. Landsc. Urban Plan. 2009, 93, 111–122. [Google Scholar] [CrossRef]
- Bojórquez-Tapia, A.; Diaz-Mondragón, S.; Ezcurra, E. GIS-based approach for participatory decision making and land suitability evaluation. Int. J. Geogr. Inf. Sci. 2001, 15, 129–151. [Google Scholar] [CrossRef]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Chen, H.; Liu, G.; Yang, Y.; Ye, X.; Shi, Z. Comprehensive Evaluation of Tobacco Ecological Suitability of Henan Province Based on GIS. Agric. Sci. China 2010, 9, 583–592. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Modell. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Gallant, L.; Euliss, H.; Browning, Z. Mapping Large-Area Landscape Suitability for Honey Bees to Assess the Influence of Land-Use Change on Sustainability of National Pollination Services. PLoS ONE 2014, 9, e99268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHarg, L. Design with Nature; Natural History Press: Garden City, NY, USA, 1969. [Google Scholar]
- Bauer, W. The use of soils data in regional planning. Geoderma 1973, 10, 1–26. [Google Scholar] [CrossRef]
- Fabos, Y.; Greene, M.; Joyner, A. The Metland Landscape Planning Process: Composite Landscape Evaluation, Alternative Plan Formulation, and Plan Evaluation; Massachusetts Agricultural Experiment Station; University of Massachusetts: Amherst, MA, USA, 1978. [Google Scholar]
- Wandahwa, P.; Van Ranst, E. Qualitative land suitability evaluation for pyrethrum cultivation in west Kenya based upon computer-captured expert knowledge and GIS. Agric. Ecosyst. Environ. 1996, 56, 187–202. [Google Scholar] [CrossRef]
- Ahamed, N.; Rao, G.; Murthy, R. GIS-based fuzzy membership model for crop-land suitability analysis. Agric. Syst. 2000, 63, 75–95. [Google Scholar] [CrossRef]
- Mendas, A.; Delali, A. Integration of MultiCriteria Decision Analysis in GIS to develop land suitability for agriculture: Application to durum wheat cultivation in the region of Mleta in Algeria. Comput. Electron. Agric. 2012, 83, 117–126. [Google Scholar] [CrossRef]
- Reshmidevi, V.; Eldho, I.; Jana, A. GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds. Agric. Syst. 2009, 101, 101–109. [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Song, X.; Wang, J.; Yang, X.; Huang, W.; Wang, J.; Zhou, J. Evaluation of Land Suitability Potentials for Selecting Winter Wheat Cultivation Areas in Beijing, China, Using RS and GIS. Agric. Sci. China 2011, 10, 1419–1430. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Y.; Wu, J.; Khane, S. Cellular automata-based spatial multi-criteria land suitability simulation for irrigated agriculture. Int. J. Geogr. Inf. Sci. 2011, 25, 131–148. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, L.; Liu, Y.; He, J. A self-adapting fuzzy inference system for the evaluation of agricultural land. Environ. Modell. Softw. 2013, 40, 226–234. [Google Scholar] [CrossRef]
- Yalew, G.; Van Griensven, A.; Van der Zaag, P. AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability evaluation. Comput. Electron. Agric. 2016, 128, 1–8. [Google Scholar] [CrossRef]
- Kong, C.; Lan, H.; Yang, G.; Xu, K. Geo-environmental suitability evaluation for agricultural land in the rural–urban fringe using BPNN and GIS: A case study of Hangzhou. Environ. Earth Sci. 2016, 75, 1136. [Google Scholar] [CrossRef]
- Uy, D.; Nakagoshi, N. Application of land suitability analysis and landscape ecology to urban greenspace planning in Hanoi, Vietnam. Urban For. Urban Green. 2008, 7, 25–40. [Google Scholar] [CrossRef]
- Pourebrahim, S.; Hadipour, M.; Mokhtar, B.; Mohamed, H. Analytic network process for criteria selection in sustainable coastal land use planning. Ocean Coast. Manag. 2010, 53, 544–551. [Google Scholar] [CrossRef]
- Aragonés-Beltrán, P.; Pastor-Ferrando, P.; García-García, F.; Pascual-Agulló, A. An Analytic Network Process approach for siting a municipal solid waste plant in the Metropolitan Area of Valencia (Spain). J. Environ. Manag. 2010, 91, 1071–1086. [Google Scholar] [CrossRef]
- Baiocchi, V.; Lelo, K.; Polettini, A.; Pomi, R. Land suitability for waste disposal in metropolitan areas. Waste Manag. Res. 2014, 32, 707–716. [Google Scholar] [CrossRef]
- Chang, N.; Parvathinathan, G.; Breeden, B. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J. Environ. Manag. 2008, 87, 139–153. [Google Scholar] [CrossRef]
- Marull, J.; Mallarach, M. A GIS methodology for assessing and predicting landscape and ecological connectivity: Applications to the metropolitan area of Barcelona (Catalonia Spain). Landsc. Urban Plan. 2005, 71, 243–262. [Google Scholar] [CrossRef]
- Maher, A.; Sbrina, A.; Mohammed, F.; Zulfa, H. Land suitability analysis of urban growth in Seremban Malaysia, using GIS based Analytical Hierarchy Process. Procedia Eng. 2017, 198, 1128–1136. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Zhang, H. Suitability evaluation for land reclamation in mining area: A case study of Gaoqiao bauxite mine. Trans. Nonferrous Met. Soc. China 2011, 21, 506–515. [Google Scholar] [CrossRef]
- Sadeeka, L.; Lalit, K.; Janaki, S. Assessment of Potential Land Suitability for Tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka Using a GIS-Based Multi-Criteria Approach. Agriculture 2019, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Ronja, H.; Tung, G.; Martin, K.; Daniel, W.; Chau, T. Multi-Criteria Decision Analysis for the Land Evaluation of Potential Agricultural Land Use Types in a Hilly Area of Central Vietnam. Land 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Kong, C.; Li, J.; Zhang, L.; Wu, C. Suitability evaluation of urban construction land based on geo-environmental factors of Hangzhou, China. Comput. Geosci. 2011, 37, 992–1002. [Google Scholar] [CrossRef]
- Cerreta, M.; Toro, D. Urbanization suitability maps: A dynamic spatial decision support system for sustainable land use. Earth Syst. Dyn. 2012, 3, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Malmir, M.; Zarkesh, K.; Monavari, M.; Jozi, A.; Sharifi, E. Analysis of land suitability for urban development in Ahwaz County in southwestern Iran using fuzzy logic and analytic network process (ANP). Environ. Monit. Assess. 2016, 188, 447. [Google Scholar] [CrossRef]
- Qingsheng, L.; Jinliang, H.; Cui, W.; Heshan, L.; Jiwei, Z.; Jinlong, J.; Bingkun, W. Land Development Suitability Evaluation of Pingtan Island Based on Scenario Analysis and Landscape Ecological Quality Evaluation. Sustainability 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Joerin, F.; Thériault, M.; Musy, A. Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int. J. Geogr. Inf. Sci. 2001, 15, 153–174. [Google Scholar] [CrossRef]
- Ananstasia, T.; Charikleia, K.; Konstantions, M.; Konstantions, M.; Chrysanthi, K. Land use planning decisions using multi-criteria analysis: The case of the master plan for the western part of the coastal zone of Thessaloniki, Greece. Int. J. Real Estate Land Plan. 2018, 1, 1–19. [Google Scholar]
- Rosli, A.; Reba, M.; Room, M. Sustainable Urban Forestry Potential Based Quantitative And Qualitative Measurement Using Geospatial Technique. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Jeon, S.; Kim, S.; Choi, C. Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landsc. Urban Plan. 2011, 99, 104–114. [Google Scholar] [CrossRef]
- Bagheri, M.; Sulaiman, A.; Vaghefi, N. Application of geographic information system technique and analytical hierarchy process model for land-use suitability analysis on coastal area. J. Coast. Conserv. 2013, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Duc, T. Using GIS and AHP technique for land-use suitability analysis. In Proceedings of the International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam, 16–18 September 2004. [Google Scholar]
- Montgomery, B.; Dragi´cevi´c, S.; Dujmovi´c, J.; Schmidt, M. A GIS-based Logic Scoring of Preference method for evaluation of land capability and suitability for agriculture. Comput. Electron. Agric. 2016, 124, 340–353. [Google Scholar] [CrossRef]
- Grima, N.; Singh, S.J.; Smetschka, B. Improving payments for ecosystem services (PES) outcomes through the use of Multi-Criteria Evaluation (MCE) and the software OPTamos. Ecosyst. Serv. 2018, 29, 47–55. [Google Scholar] [CrossRef]
- Cover, J. Integrating multi-criteria evaluation with of the geographical information systems. Int. J. Geogr. Inf. Syst. 1991, 5, 321–339. [Google Scholar] [CrossRef] [Green Version]
- Van den Bossche, J.; De Baets, B.; Verwaeren, J.; Botteldooren, D.; Theunis, J. Development and evaluation of land use regression models for black carbon based on bicycle and pedestrian measurements in the urban environment. Environ. Model. Softw. 2018, 99, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Yeh, C. Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan. Ecol. Eng. 2009, 35, 487–496. [Google Scholar] [CrossRef]
- Pan, G.; Pan, J. Research in cropland suitability analysis based on GIS. Inter. Confer. Comput. Comput. Technol. Agric. 2012, 365, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Hasan, Z.; Mohsen, A.; Philip, K.; Mohammadreza, K.; Himan, S.; Anuer, A.; Mohamed, N.; Saro, L. GIS Multi-Criteria Analysis by Ordered Weighted Averaging (OWA): Toward an Integrated Citrus Management Strategy. Sustainability 2019, 11, 1009. [Google Scholar] [CrossRef] [Green Version]
- Araya, K.; Mltiku, H.; Glrmay, G.; Muktar, M. GIS-based multi-criteria model for land suitability evaluation of rainfed teff crop production in degraded semi-arid highlands of Northern Ethiopia. Modeling Earth Syst. Environ. 2018, 4, 1467–1486. [Google Scholar] [CrossRef]
- Merlos, F.; Monzon, P.; Mercau, L.; Taboada, M.; Andrade, H.; Hall, J.; Jobbagy, E.; Cassman, G.; Grassini, P. Potential for Crop Production Increase in Argentina Through Closure of Existing Yield Gaps. Field Crop. Res. 2015, 184, 145–154. [Google Scholar] [CrossRef]
- Baja, S.; Nesati, R.; Arif, S. Land use and land suitability assessment within the context of spatial planning regulation. IOP Conf. Ser. Earth Environ. Sci. 2018, 157, 1–7. [Google Scholar] [CrossRef]
- Huiping, H.; Qiangzi, L.; Yuan, Z. Urban Residential Land Suitability Analysis Combining Remote Sensing and Social Sensing Data: A Case Study in Beijing, China. Sustainability 2019, 11, 2255. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E. Integration of linear programming and GIS for land-use modelling. Int. J. Geogr. Information Sci. 1993, 7, 71–83. [Google Scholar] [CrossRef]
- Abudeif, A.; Abdel Moneim, A.; Farrag, A. Multi criteria decision analysis based on analytic hierarchy process in GIS environment for siting nuclear power plant in Egypt. Ann. Nucl. Energy 2015, 75, 682–692. [Google Scholar] [CrossRef]
- López, T.; Yarnal, B. Putting adaptive capacity into the context of people’s lives: A case study of two flood-prone communities in Puerto Rico. Nat. Hazards 2010, 52, 277–297. [Google Scholar] [CrossRef]
- Akıncı, H.; Ayse, Y.; Bulent, T. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- ESRI, Arc GIS, Version 10X Help. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/location-allocation.htm (accessed on 24 October 2019).
- Ghanavati, E. Flood Risk Zonation for Karaj City Using Fuzzy Logic. Geogr. Environ. Hazards 2014, 8, 23–25. [Google Scholar]
- Ashraf, A.; Ahmed, F.; Ahmed, M.; Biswajeet, P. Flood Hazard Assessment of the Urban Area of Tabuk City, Kingdom of Saudi Arabia by Integrating Spatial-Based Hydrologic and Hydrodynamic Modeling. Sensors 2019, 19, 1024. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, A.; Ahmed, F. Flood Risk Assessment of the Wadi Nu’man Basin, Mecca, Saudi Arabia (During the Period, 1988–2019) Based on the Integration of Geomatics and Hydraulic Modeling: A Case Study. Water 2019, 11, 1887. [Google Scholar] [CrossRef] [Green Version]
- Alexander, K.; Benjamin, M.; Grephas, P. Urban landuse suitability assessment using geoinformation techniques for Kisumu municipality in Kenya. Int. J. Res. Rev. Appl. Sci. 2012, 13, 522–530. [Google Scholar]
- Houghton, A.; Hackler, L.; Lawrence, T. The U.S. Carbon Budget: Contributions from Land-Use Change. Science 1999, 285, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, B. Urbanisation and access to basic amenities in India. Urban India 2011, 31, 1–13. [Google Scholar]
M | Input Data | Scale and Spatial Accuracy | Source |
---|---|---|---|
1 | Geologic Formation | scale 1:250,000 | General Authority for Geologic Survey |
2 | Soil | scale 1:250,000 | Ministry of environment water & Agriculture |
3 | Streams/Valleys | DEM 12 m | (Vertex) website of NASA |
4 | Slopes | DEM 12 m | (Vertex) website of NASA |
5 | Agriculture Areas | satellite image Landsat 8/OLI | United States Geologic Survey (USGS) website |
6 | Urban Areas | satellite image Landsat 8/OLI | United States Geologic Survey (USGS) website |
7 | Road Networks | satellite image Landsat 8/OLI | United States Geologic Survey (USGS) website |
8 | Railways | Regional Plan atlas for Riyadh region | Royal commission for Riyadh city—2019 |
9 | Wells | topographic maps scale 1:50,000—Regional Plan atlas for Riyadh region | General Authority for Geologic Survey—Royal commission for Riyadh city—2019 |
10 | Power Lines | topographic maps scale 1:50,000 | General Authority for Geologic Survey |
11 | Crevasses/Faults | topographic maps scale 1:50,000 | General Authority for Geologic Survey |
12 | Environmental Areas | topographic maps scale 1:50,000 | General Authority for Geologic Survey |
Parameter | Categories | Suitability | Suitability Value |
---|---|---|---|
Slopes | (1–10) | less than 2 degrees (higher suitability) more than 35 degrees (low suitability) | 10 1 |
Streams/Valleys | (1–10) | less than 200 m (low suitability) more than 3.5 km (higher suitability) | 1 10 |
Urban Areas | (1–10) | less than 1 km (higher suitability) more than 17 km (low suitability) | 10 1 |
Road Networks | (1–10) | less than 1 km (higher suitability) more than 14 km (low suitability) | 10 1 |
Railways | (1–10) | less than 1 km (higher suitability) more than 35 km (low suitability) | 10 1 |
Agriculture Areas | (1–10) | less than 200 m (low suitability) more than 15 km (higher suitability) | 1 10 |
Soil Type | (1–10) | calcic orthider (low suitability) torry samantas + rock fragments and notches (higher suitability) | 1 10 |
Geologic Formation | (1–10) | Dughum member (low suitability) Rufa Formation (higher suitability) | 1 10 |
Crevasses/Faults | (1–10) | less than 1 km (low suitability) more than 22 km (higher suitability) | 1 10 |
Wells | (1–10) | less than 1 km (low suitability) more than 9 km (higher suitability) | 1 10 |
Environmental Areas | (1–10) | less than 1 km (low suitability) more than 23 km (higher suitability) | 1 10 |
Power Lines | (1–10) | less than 1 km (low suitability) more than 30 km (higher suitability) | 1 10 |
The Weight or Preference Index | Explanation of How Important a Parameter Compared to Another |
---|---|
1 | Equally important |
3 | Moderately more important |
5 | Strongly more important |
7 | Very strongly more important |
9 | Overwhelmingly more important |
2—4—6—8 | Inter between weights can be used in the pairwise comparisons |
Service | S | V | U | R | RW | A | SO | G | C | W | E | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 | 9 |
V | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | 9 | 9 |
U | 0.5 | 0.5 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 8 |
R | 0.33 | 0.33 | 0.5 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
RW | 0.25 | 0.25 | 0.33 | 0.5 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 |
A | 0.2 | 0.2 | 0.25 | 0.33 | 0.5 | 1 | 2 | 2 | 3 | 4 | 5 | 6 |
SO | 0.17 | 0.17 | 0.2 | 0.25 | 0.33 | 0.5 | 1 | 1 | 2 | 3 | 4 | 5 |
G | 0.17 | 0.17 | 0.2 | 0.25 | 0.33 | 0.5 | 1 | 1 | 2 | 3 | 4 | 5 |
C | 0.14 | 0.14 | 0.17 | 0.2 | 0.25 | 0.33 | 0.5 | 0.5 | 1 | 2 | 3 | 4 |
W | 0.13 | 0.13 | 0.14 | 0.17 | 0.2 | 0.25 | 0.33 | 0.33 | 0.5 | 1 | 2 | 3 |
E | 0.11 | 0.11 | 0.13 | 0.14 | 0.17 | 0.2 | 0.25 | 0.25 | 0.33 | 0.5 | 1 | 2 |
P | 0.11 | 0.11 | 0.13 | 0.13 | 0.14 | 0.17 | 0.2 | 0.2 | 0.25 | 0.33 | 0.5 | 1 |
Sum | 4.11 | 4.11 | 7.05 | 10.97 | 15.92 | 21.95 | 29.28 | 29.28 | 38.08 | 47.83 | 58.5 | 67 |
Service | S | V | U | R | RW | A | SO | G | C | W | E | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | 0.243 | 0.243 | 0.284 | 0.273 | 0.251 | 0.228 | 0.205 | 0.205 | 0.184 | 0.167 | 0.154 | 0.134 |
V | 0.243 | 0.243 | 0.284 | 0.273 | 0.251 | 0.228 | 0.205 | 0.205 | 0.184 | 0.167 | 0.154 | 0.134 |
U | 0.122 | 0.122 | 0.142 | 0.182 | 0.188 | 0.182 | 0.171 | 0.171 | 0.158 | 0.146 | 0.137 | 0.119 |
R | 0.080 | 0.080 | 0.071 | 0.091 | 0.126 | 0.137 | 0.137 | 0.137 | 0.131 | 0.125 | 0.120 | 0.119 |
RW | 0.061 | 0.061 | 0.047 | 0.046 | 0.063 | 0.091 | 0.102 | 0.102 | 0.105 | 0.105 | 0.103 | 0.104 |
A | 0.049 | 0.049 | 0.035 | 0.030 | 0.031 | 0.046 | 0.068 | 0.068 | 0.079 | 0.084 | 0.085 | 0.090 |
SO | 0.041 | 0.041 | 0.028 | 0.023 | 0.021 | 0.023 | 0.034 | 0.034 | 0.053 | 0.063 | 0.068 | 0.075 |
G | 0.041 | 0.041 | 0.028 | 0.023 | 0.021 | 0.023 | 0.034 | 0.034 | 0.053 | 0.063 | 0.068 | 0.075 |
C | 0.034 | 0.034 | 0.024 | 0.018 | 0.016 | 0.015 | 0.017 | 0.017 | 0.026 | 0.042 | 0.051 | 0.060 |
W | 0.032 | 0.032 | 0.020 | 0.015 | 0.013 | 0.011 | 0.011 | 0.011 | 0.013 | 0.021 | 0.034 | 0.045 |
E | 0.027 | 0.027 | 0.018 | 0.013 | 0.011 | 0.009 | 0.009 | 0.009 | 0.009 | 0.010 | 0.017 | 0.030 |
P | 0.027 | 0.027 | 0.018 | 0.012 | 0.009 | 0.008 | 0.007 | 0.007 | 0.007 | 0.007 | 0.009 | 0.015 |
Sum | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Service | Sum of the Row | The Relative Weight |
---|---|---|
S | 2.572 | 0.214 |
V | 2.572 | 0.214 |
U | 1.840 | 0.153 |
R | 1.354 | 0.113 |
RW | 0.990 | 0.082 |
A | 0.714 | 0.059 |
SO | 0.504 | 0.042 |
G | 0.504 | 0.042 |
C | 0.354 | 0.030 |
W | 0.258 | 0.022 |
E | 0.188 | 0.016 |
P | 0.151 | 0.013 |
Sum | 12 | 1 |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
R | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.3 | 1.4 | 1.45 | 1.49 |
m | Parameter | Areas of Low Spatial Suitability | Areas of High Spatial Suitability | ||||
---|---|---|---|---|---|---|---|
Category | Area (km2) | % | Category | Area (km2) | % | ||
1 | Slopes | more than 25 degrees | 6.49 | 0.24 | less than 4 degrees | 1598.31 | 58.75 |
2 | Streams/Valleys | less than 0.5 km | 1082.87 | 39.8 | more than 3 km | 75.94 | 2.79 |
3 | Urban Areas | more than 15 km | 24.1 | 0.89 | less than 3 km | 1569.24 | 57.68 |
4 | Road Networks | more than 12 km | 16.41 | 0.6 | less than 2 km | 1450.68 | 53.32 |
5 | Railways | more than 30 km | 93.41 | 3.43 | less than 2 km | 250.25 | 9.2 |
6 | Agriculture Areas | less than 1 km | 988.59 | 36.34 | more than 13 km | 19.52 | 0.72 |
7 | Soil Type | calcic orthider, torry samantas | 269.18 | 9.89 | (torry samantas + rock fragments and notches) and orthider + torry orthider+ rock fragments and notches) | 1493.87 | 54.91 |
8 | Geologic Formation | Deghom | 310.04 | 11.4 | alluvial plain and solay | 1227.47 | 45.12 |
9 | Crevasses/Faults | less than 2 km | 459.95 | 16.91 | more than 18 km | 92.88 | 3.41 |
10 | Wells | less than 2 km | 535.11 | 19.67 | more than 8 km | 46.59 | 1.71 |
11 | Environmental Areas | less than 2 km | 680.62 | 25.2 | more than 20 km | 85.88 | 3.16 |
12 | Power Lines | less than 2 km | 633.95 | 23.3 | more than 24 km | 213.74 | 7.86 |
M | Suitability Degree | Suitability Percentage | Area (km2) | % |
---|---|---|---|---|
1 | Very High | 66–86% | 511.45 | 18.8% |
2 | High | 62–66% | 731.27 | 26.88% |
3 | Moderate | 57–62% | 820.5 | 30.16% |
4 | Low | 51–57% | 491.59 | 18.07% |
5 | Very Low | 32–51% | 165.68 | 6.09% |
Total | 2720.5 | 100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El Karim, A.; Alogayell, H.M.; Alkadi, I.I.; Youssef, I. Mapping of GIS-Land Use Suitability in the Rural–Urban Continuum between Ar Riyadh and Al Kharj Cities, KSA Based on the Integrating GIS Multi Criteria Decision Analysis and Analytic Hierarchy Process. Environments 2020, 7, 75. https://doi.org/10.3390/environments7100075
Abd El Karim A, Alogayell HM, Alkadi II, Youssef I. Mapping of GIS-Land Use Suitability in the Rural–Urban Continuum between Ar Riyadh and Al Kharj Cities, KSA Based on the Integrating GIS Multi Criteria Decision Analysis and Analytic Hierarchy Process. Environments. 2020; 7(10):75. https://doi.org/10.3390/environments7100075
Chicago/Turabian StyleAbd El Karim, Ashraf, Haya M. Alogayell, Ibtesam I. Alkadi, and Ismail Youssef. 2020. "Mapping of GIS-Land Use Suitability in the Rural–Urban Continuum between Ar Riyadh and Al Kharj Cities, KSA Based on the Integrating GIS Multi Criteria Decision Analysis and Analytic Hierarchy Process" Environments 7, no. 10: 75. https://doi.org/10.3390/environments7100075