Chlorophyll in the Eastern Mediterranean Sea: Correlations with Environmental Factors and Trends
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chlorophyll Correlations with Environmental Factors
3.2. Chlorophyll Trends
4. Discussion
4.1. Correlations among Chlorophyll and Environmental Variables
4.2. Temporal Trends in Chlorophyll Concentrations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.A.; Escribano, R.; Poulet, S. Phytoplankton food quality determines time windows for successful zooplankton reproductive pulses. Ecology 2006, 8, 2992–2999. [Google Scholar] [CrossRef]
- Gregg, W.W.; Conkright, M.E.; Ginoux, P.; O’Reilly, J.E.; Casey, N.W. Ocean primary production and climate: Global decadal changes. Geophys. Res. Lett. 2003, 30, 1809. [Google Scholar] [CrossRef]
- Hays, G.C.; Richardson, A.J.; Robinson, C. Climate change and marine plankton. Trends Ecol. Evol. 2005, 20, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Durant, J.M.; Stige, L.C.; Hessen, D.O.; Hjermann, D.Ø.; Zhu, L.; Llope, M.; Stenseth, N.C. Contrasting correlation patterns between environmental factors and chlorophyll levels in the global ocean. Glob. Biogeochem. Cycles 2015, 29, 2095–2107. [Google Scholar] [CrossRef]
- Maritorena, S.; Siegel, D.A. Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sens. Environ. 2005, 94, 429–440. [Google Scholar] [CrossRef]
- Joint, I.; Groom, S.B. Estimation of phytoplankton production from space: Current status and future potential of satellite remote sensing. J. Exp. Mar. Bio. Ecol. 2000, 250, 233–255. [Google Scholar] [CrossRef]
- Turley, C.; Bianchi, M.; Christaki, U.; Conan, P.; Harris, J.; Psarra, S.; Ruddy, G.; Stutt, E.; Tselepides, A.; Van Wambekeet, F. Relationship between primary producers and bacteria in an oligotrophic sea--the Mediterranean and biogeochemical implications. Mar. Ecol. Prog. Ser. 2000, 193, 11–18. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Ribera D’Alcalà, M. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 2009, 6, 139–148. [Google Scholar] [CrossRef]
- Karydis, M.; Kitsiou, D. Eutrophication and environmental policy in the Mediterranean Sea: A review. Environ. Monit. Assess. 2012, 184, 4931–4984. [Google Scholar] [CrossRef]
- Barale, V.; Jaquet, J.M.; Ndiaye, M. Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998–2003). Remote Sens. Environ. 2008, 112, 3300–3313. [Google Scholar] [CrossRef]
- Volpe, G.; Nardelli, B.B.; Cipollini, P.; Santoleri, R.; Robinson, I.S. Seasonal to interannual phytoplankton response to physical processes in the Mediterranean Sea from satellite observations. Remote Sens. Environ. 2012, 117, 223–235. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Ludicone, D.; de Boyer Montegut, C.; Testor, P.; Antoine, D.; Marullo, S.; Santoleri, R.; Madec, G. Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophys. Res. Lett. 2005, 32, L12605. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Kahru, M.; Gille, S.T.; Murtugudde, R.; Strutton, P.G.; Manzano-Sarabia, M.; Wang, H.; Mitchell, B.G. Global correlations between winds and ocean chlorophyll. J. Geophys. Res. 2010, 115, C12040. [Google Scholar] [CrossRef]
- Katara, I.; Illian, J.; Pierce, G.J.; Beth Scott, B.; Wang, J. Atmospheric forcing on chlorophyll concentration in the Mediterranean. Hydrobiologia 2008, 612, 33–48. [Google Scholar] [CrossRef]
- Valavanis, V.D.; Katara, I.; Palialexis, A. Critical regions: A GIS-based modelling approach for the mapping of marine productivity hotspots. Aquat. Sci. 2004, 36, 234–243. [Google Scholar] [CrossRef]
- Doney, S.C. Oceanography: Plankton in a warmer world. Nature 2006, 444, 695–696. [Google Scholar] [CrossRef]
- Kotta, D.; Kitsiou, D. Chlorophyll-a variations in terms of meteorological forcing: The Rhodes Gyre and the Cyclades region. Fresen. Environ. Bull. 2014, 23, 3131–3139. [Google Scholar]
- Kim, T.W.; Najjar, R.G.; Lee, K. Influence of precipitation events on phytoplankton biomass in coastal waters of the eastern United States. Glob. Biogeochem. Cycles 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Kotta, D.; Kitsiou, D.; Kassomenos, P. First Rains as Extreme Events Influencing Marine Primary Production. In Proceedings of the 13th International Conference on Meteorology, Climatology and Atmospheric Physics, Thessaloniki, Greece, 19–21 September 2016; pp. 263–270. [Google Scholar] [CrossRef]
- Kotta, D.; Kitsiou, D.; Kassomenos, P. Summer Rainfall Event: The Skill of Extreme Forecast Index and Effects on Marine Chlorophyll Concentrations. In Proceedings of the 14th International Conference on Meteorology, Climatology and Atmospheric Physics COMECAP 2018, Alexandroupolis, Greece, 15–17 October 2018; pp. 547–552. [Google Scholar]
- Christodoulaki, S.; Petihakis, G.; Kanakidou, M.; Mihalopoulos, N.; Tsiaras, K.; Triantafyllou, G. Atmospheric deposition in the Eastern Mediterranean: A driving force for ecosystem dynamics. J. Mar. Syst. 2013, 109–110, 78–93. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Siegel, D.A.; McClain, C.R.; Sarmiento, J.L.; Feldman, G.C.; Milligan, A.J.; Falkowski, P.G.; Letelier, R.M.; Boss, E.S. Climate-driven trends in contemporary ocean productivity. Nature 2006, 444, 752–755. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2014, 43, 1183–1195. [Google Scholar] [CrossRef]
- Kotta, D.; Kitsiou, D. Medicanes Triggering Chlorophyll Increase. J. Mar. Sci. Eng. 2019, 7, 75. [Google Scholar] [CrossRef]
- Martinez, E.; Antoine, D.; D’Ortenzio, F.; Gentili, B. Climate-Driven Basin-Scale Decadal Oscillations of Oceanic Phytoplankton. Science 2009, 326, 1253–1256. [Google Scholar] [CrossRef] [Green Version]
- Dunstan, P.K.; Foster, S.D.; King, E.; Risbey, J.; O’Kane Terence, J.; Monselesan, D.; Hobday, A.J.; Hartog, J.R.; Thompson, P.A. Global patterns of change and variation in sea surface temperature and chlorophyll. Sci. Rep. 2018, 8, 14624. [Google Scholar] [CrossRef]
- Coppini, G.; Lyubarstev, V.; Pinardi, N.; Colella, S.; Santoleri, R.; Christiansen, T. The Use of Ocean-Colour Data to Estimate Chl-a Trends in European Seas. Int. J. Geosci. 2013, 4, 927–949. [Google Scholar] [CrossRef] [Green Version]
- Colella, S.; Falcini, F.; Rinaldi, E.; Sammartino, M.; Santoleri, R. Mediterranean Ocean Colour Chlorophyll Trends. PLoS ONE 2016, 11, e0155756. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Pardo, S.; Benincasa, M.; Brando, V.E.; Brewin, R.J.W.; Mélin, F.; Santoleri, R. Copernicus Marine Service Ocean State Report. J. Oper. Oceanogr. 2018, 11, s23–s26. [Google Scholar] [CrossRef]
- Salgado-Hernanz, P.M.; Racault, M.F.; Font-Muñoz, J.S.; Basterretxea, G. Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing. Remote Sens. Environ. 2019, 221, 50–64. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Zibordi, G. Phytoplankton Determination in an Optically Complex Coastal Region Using a Multilayer Perceptron Neural Network. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2861–2868. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Mélin, F.; Zibordi, G.; Berthon, J.F. Use of the novelty detection technique to identify the range of applicability of the empirical ocean color algorithms. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2833–2843. [Google Scholar] [CrossRef]
- Volpe, G.; Santoleri, R.; Vellucci, V.; d’Alcalà, M.R.; Marullo, S.; D’Ortenzio, F. The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates. Remote Sens. Environ. 2007, 107, 625–638. [Google Scholar] [CrossRef]
- Berthon, J.F.; Zibordi, G.; Doyle, J.P.; Grossi, S.; Van der Linde, D.; Targa, C. Coastal Atmosphere and Sea Time Series (CoASTS): Data analysis. In SeaWiFS Postlaunch Technical Report Series; NASA Tech. Memo. 2002-206892; Hooker, S.B., Firestone, E.R., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002; Volume 20, pp. 1–25. [Google Scholar]
- Pierson, W.J.; Moskowitz, L. A proposed spectral form for fully developed wind seas based on the similarity theory of Kitaigorodski. J. Geophys. Res. 1964, 69, 5181–5190. [Google Scholar] [CrossRef]
- Gauthier, T.D. Detecting Trends Using Spearman’s Rank Correlation Coefficient. Envirion. Forensics 2001, 2, 359–362. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 254–271. [Google Scholar] [CrossRef]
- Skliris, N.; Mantziafou, A.; Sofianos, S.; Gkanasos, A. Satellite-derived variability of the Aegean Sea ecohydrodynamics. Cont. Shelf Res. 2010, 30, 403–418. [Google Scholar] [CrossRef]
- Houpert, L.; Testor, P.; Durrieu de Madron, X.; Somot, S.; D’Ortenzio, F.; Estournel, C.; Lavigne, H. Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Prog. Oceanogr. 2015, 132, 333–352. [Google Scholar] [CrossRef]
- Siokou-Frangou, I.; Christaki, U.; Mazzocchi, M.G.; Montresor, M.; Ribera D’Alcalà, M.; Vaquè, D.; Zingone, A. Plankton in the open Mediterranean Sea: A review. Biogeosciences 2010, 7, 1543–1586. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N.; Psarra, S. Coastal upwelling over the North Aegean Sea: 611 Observations and simulations. Cont. Shelf Res. 2017, 149, 32–51. [Google Scholar] [CrossRef]
- Gallisai, R.; Peters, F.; Volpe, G.; Basart, S.; Baldasano, J.M. Saharan Dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales. PLoS ONE 2014, 9, e110762. [Google Scholar] [CrossRef]
- Ridame, C.; Dekaezemacker, J.; Guieu, C.; Bonnet, S.; L’Helguen, S.; Malien, F. Phytoplanktonic response to contrasted Saharan dust deposition events during mesocosm experiments in LNLC environment. Biogeosci. Discuss. 2014, 11, 753–796. [Google Scholar] [CrossRef]
- Kotta, D.; Kitsiou, D. Exploring Possible Influence of Dust Episodes on Surface Marine Chlorophyll Concentrations. J. Mar. Sci. Eng. 2019, 7, 50. [Google Scholar] [CrossRef]
- Shaltout, M.; Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 2014, 56, 411–443. [Google Scholar] [CrossRef] [Green Version]
- Romanou, A.; Tselioudis, G.; Zerefos, C.; Clayson, C.; Curry, J.; Andersson, A. Evaporation-precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J. Clim. 2010, 23, 5268–5287. [Google Scholar] [CrossRef]
- Shaltout, M.; Omstedt, A. Recent precipitation trends and future scenarios over the Mediterranean Sea. Geofizika 2014, 31, 127–150. [Google Scholar] [CrossRef]
- Henson, S.A.; Cole, H.S.; Hopkins, J.; Martin, A.P.; Yool, A. Detection of climate change-driven trends in phytoplankton phenology. Glob. Chang. Biol. 2018, 24, e101–e111. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotta, D.; Kitsiou, D. Chlorophyll in the Eastern Mediterranean Sea: Correlations with Environmental Factors and Trends. Environments 2019, 6, 98. https://doi.org/10.3390/environments6080098
Kotta D, Kitsiou D. Chlorophyll in the Eastern Mediterranean Sea: Correlations with Environmental Factors and Trends. Environments. 2019; 6(8):98. https://doi.org/10.3390/environments6080098
Chicago/Turabian StyleKotta, Dionysia, and Dimitra Kitsiou. 2019. "Chlorophyll in the Eastern Mediterranean Sea: Correlations with Environmental Factors and Trends" Environments 6, no. 8: 98. https://doi.org/10.3390/environments6080098
APA StyleKotta, D., & Kitsiou, D. (2019). Chlorophyll in the Eastern Mediterranean Sea: Correlations with Environmental Factors and Trends. Environments, 6(8), 98. https://doi.org/10.3390/environments6080098