Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS
Abstract
1. Introduction
2. Methodology
3. Study Area
4. Hydrogeological Setting
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vrba, J. Chapter 5: The Impact of Aquifer Intensive Use on Groundwater Quality; Commission on Groundwater Protection of the International Association of Hydrogeologists (IAH): Prague, Czech Republic, 2002; pp. 113–132. [Google Scholar]
- EUWI. Mediterranean Groundwater Report. Technical report on groundwater management in the Mediterranean and the Water Framework Directive. Available online: https://circabc.europa.eu/sd/a/50c3b2a9-4816-4ab1-9a33-d41c327759e3/Mediterranean%20Groundwater%20Report_final_150207_clear.pdf (accessed on 15 February 2007).
- Petalas, C.; Lambrakis, N. Simulation of intense salinization phenomena in coastal aquifers—The case of the coastal aquifers of Thrace. J. Hydrol. 2006, 324, 51–64. [Google Scholar] [CrossRef]
- Zaarour, T. Application of GALDIT Index in the Mediterranean Region to Assess Vulnerability to Sea Water Intrusion. Master’s Thesis, Department of Physical Geography and Ecosystem Science Lund University, Lund, Sweden, 2017. [Google Scholar]
- Chachadi, A.G.; Lobo-Ferreira, J.P. Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Coastin—A Coastal Policy Res. Newsl. 2001, 4, 7–9. [Google Scholar]
- Chachadi, A.G.; Lobo-Ferreira, J.P. Assessing aquifer vulnerability to sea water intrusion using GALDIT method: Part 2-GALDIT Indicators Description. In Proceedings of the fourth Inter-Celtic Colloquium on Hydrology and Management of Water Resources, Guimaraes, Portugal, 11–14 July 2005. [Google Scholar]
- Das, A.; Datta, B. Development of multi objective management models for coastal aquifers. J. Water Resour. Plan. Manag. 1999, 1252, 76–87. [Google Scholar] [CrossRef]
- Werner, A.D.; Alcoe, D.W.; Ordens, C.M.; Hutson, J.L.; Ward, J.D.; Simmons, C.T. Current practice and future challenges in coastal aquifer management: Flux-based and trigger-level approaches with application to an Australian case study. Water Resour. Manag. 2011, 25, 1831–1853. [Google Scholar] [CrossRef]
- Suhartono, E.; Purwanto, P.; Suripin, S. Seawater Intrusion Modeling on Groundwater Confined Aquifer in Semarang. Procedia Environ. Sci. 2015, 23, 110–115. [Google Scholar] [CrossRef]
- Allouche, N.; Maanan, M.; Gontara, M.; Rollo, N.; Jmal, I.; Bouri, S. A global risk approach to assessing groundwater vulnerability. Environ. Model. Softw. 2017, 88, 168–182. [Google Scholar] [CrossRef]
- Singaraja, C.; Chidambaram, S.; Anandhan, P.; Prasanna, M.V.; Thivya, C.; Thilagavathi, R. A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India. Environ. Dev. Sustain. 2015, 17, 443–475. [Google Scholar] [CrossRef]
- Motevalli, A.; Moradi, H.R.; Javadi, S. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [Google Scholar] [CrossRef]
- Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.; Soulios, G.; Pliakas, F.; Tsokas, G. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Sci. Total Environ. 2016, 543, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Chachadi, A.G.; Raikar, P.S.; Lobo Ferreira, J.P.; Oliveira, M.M. GIS and Mathematical Modelling for the Assessment of Groundwater Vulnerability to Pollution: Application to an Indian Case Study Area in Goa; Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 2001. [Google Scholar]
- Bouderbala, A.; Remini, B.; Saaed Hamoudi, A.; Pulido-Bosch, A. Assessment of groundwater vulnerability and quality in coastal aquifers: A case study (Tipaza, North Algeria). Arab. J. Geosci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Recinos, N.; Kallioras, A.; Pliakas, F.; Schuth, C. Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ. Earth Sci. 2015, 73, 1017–1032. [Google Scholar] [CrossRef]
- Pedreira, R.; Kallioras, A.; Pliakas, F.; Gkiougkis, I.; Schuth, C. Groundwater vulnerability assessment of a coastal aquifer system at River Nestos eastern Delta Greece. Environ. Earth Sci. 2015, 73, 6387–6415. [Google Scholar] [CrossRef]
- Kazakis, N.; Spiliotis, M.; Voudouris, K.; Pliakas, F.K.; Papadopoulos, B. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Sci. Total. Environ. 2018, 621, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Singhal, V.; Goyal, R. Development of conceptual groundwater flow model for Pali Area, India. Afr. J. Environ. Sci. Technol. 2011, 5, 1085–1092. [Google Scholar] [CrossRef]
- Voudouris, K.; Kazakis, N.; Polemio, M.; Kareklas, K. Assessment of intrinsic vulnerability using the DRASTIC model and GIS in the Kiti aquifer, Cyprus. Eur. Water 2010, 30, 13–24. [Google Scholar]
- Sener, E.; Sener, S.; Davraz, A. Assessment of aquifer vulnerability based on GIS and DRASTIC methods: A case study of the Senirkent–Uluborlu basin (Isparta, Turkey). Hydrogeol. J. 2009, 17, 2023–2035. [Google Scholar] [CrossRef]
- Watkins, D.W.; McKinney, D.C.; Maidment, D.R. Use of geographic information systems in ground-water flow modeling. J. Water Resour. Plan. Manag. 1996, 122, 88–96. [Google Scholar] [CrossRef]
- Betancur, T. Una Aproximación al Conocimiento de un Sistema Acuífero Tropical. Caso de Estudio: Bajo Cauca Antioqueño. Ph.D. Thesis, Universidad de Antioquia, Medellín, Colombia, 2008. (In Spanish). [Google Scholar]
- Betancur, T.; Palacio, C.A.; Escobar, J.F. Conceptual Models in Hydrogeology, Methodology and Results. Hydrogeology—A Global Perspective; Gholam, A.K., Ed.; InTechOpen: London, UK, 2012; Volume 5, p. 232. ISBN 978-953-51-0048-5. [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Hydrogeological Study—Water District of Aegean Islands. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010; Volumes 1 and 2. (In Greek) [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Hydrogeological Model of Flow Simulation of a Granular Aquifer System in North Rhodes Island. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010. (In Greek) [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Field Measurements (Water—Physicochemical Measurements)-Water District of Aegean Islands. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010; Volume 1. (In Greek) [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Chemical analyses of groundwater (general-specific—trace elements—isotopes)—Water District of Aegean Islands. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010; Volume 1. (In Greek) [Google Scholar]
- Hellenic Statistical Authority. Population and Housing Census 2011. Permanent Population. 2011. Available online: http://www.statistics.gr/2011-census-pop-hous (accessed on 1 May 2019).
- Civil Aviation Authority. Air Traffic Statistics, Directorate of Organization and Development, Department of Statistics, 2009–2017. Available online: http://www.ypa.gr/profile/statistics/yearstatistics/ (accessed on 1 May 2019).
- Mavriou, Z. Contribution to the Development of Aquifers Conceptual Models in Rhodes Island. Application of GALDIT Method. Master’s Thesis, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece, 2018. (In Greek). [Google Scholar]
- Ministry of Environment and Energy. 1st Update of River Basin Management Plans of the Aegean Islands Water District; Special Secretariat for Water; Ministry of Environment and Energy: Athens, Greece, 2017. (In Greek)
- Stergiadis, M. Hydrogeological Study in the North Part of Rhodes Island—Simulation of Groundwater Flow Using a Three-Dimensional Model of Groundwater Flow and Princeton Transport Code (PTC) Model. Diploma Thesis, Department of Environmental Engineering, Technical University of Crete, Chania, Greece, 2014. (In Greek). [Google Scholar]
- Werner, A.D.; Bakker, M.; Post, V.E.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Yakirevich, A.; Melloul, A.; Shaath, S.; Borisov, V. Simulation of seawater intrusion into the Khan Yunis area of the Gaza strip coastal aquifer. J. Hydrogeol. 1998, 6, 549–559. [Google Scholar] [CrossRef]
- Kazakis, N.; Busico, G.; Colombani, N.; Mastrocicco, M.; Voudouris, K. Limitations of GALDIT to map seawater intrusion vulnerability in a highly touristic coastal area. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012050. [Google Scholar] [CrossRef]
Parameter | Weight | Classification | Rating | |
---|---|---|---|---|
Groundwater Occurrence (G) | 1 | Confined aquifer | 10 | |
Unconfined aquifer | 7.5 | |||
Leaky confined aquifer | 5 | |||
Bounded aquifer | 2.5 | |||
Aquifer Hydraulic Conductivity (A) (m/day) | 3 | High | >40 | 10 |
Medium | 40–10 | 7.5 | ||
Low | 10–5 | 5 | ||
Very low | <5 | 2.5 | ||
Height of Groundwater Level above Sea Level (L) (m) | 4 | High | <1.0 | 10 |
Medium | 1.0–1.5 | 7.5 | ||
Low | 1.5–2.0 | 5 | ||
Very low | >2.0 | 2.5 | ||
Distance from the Shore (D) (m) | 4 | High | <500 | 10 |
Medium | 500–750 | 7.5 | ||
Low | 750–1000 | 5 | ||
Very low | >1000 | 2.5 | ||
Impact of existing status of seawater intrusion (I) | 1 | High | >2 | 10 |
Medium | 1.5–2.0 | 7.5 | ||
Low | 1.0–1.5 | 5 | ||
Very low | <1 | 2.5 | ||
Thickness of the aquifer (T) (m) | 2 | High | >10 | 10 |
Medium | 7.5–10 | 7.5 | ||
Low | 5–7.5 | 5 | ||
Very low | <5 | 2.5 |
Mean Monthly Rainfall Values (mm) for the Period 2013–2017 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | July | Aug. | Sept. | Oct. | Nov. | Dec. |
132.0 | 66.9 | 88.0 | 22.9 | 39.4 | 1.5 | 0.9 | 1.1 | 19.1 | 54.4 | 149.6 | 66.6 |
Mean annual rainfall: 642.3 |
GALDIT Score | Vulnerability | km2 | (%) |
---|---|---|---|
≥7.5 | High | 3.46 | 4.83 |
5–7.5 | Medium | 24.01 | 33.56 |
<5 | Low | 44.09 | 61.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavriou, Z.; Kazakis, N.; Pliakas, F.-K. Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS. Environments 2019, 6, 56. https://doi.org/10.3390/environments6050056
Mavriou Z, Kazakis N, Pliakas F-K. Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS. Environments. 2019; 6(5):56. https://doi.org/10.3390/environments6050056
Chicago/Turabian StyleMavriou, Zografina, Nerantzis Kazakis, and Fotios-Konstantinos Pliakas. 2019. "Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS" Environments 6, no. 5: 56. https://doi.org/10.3390/environments6050056
APA StyleMavriou, Z., Kazakis, N., & Pliakas, F.-K. (2019). Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS. Environments, 6(5), 56. https://doi.org/10.3390/environments6050056