Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS
Abstract
:1. Introduction
2. Methodology
3. Study Area
4. Hydrogeological Setting
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vrba, J. Chapter 5: The Impact of Aquifer Intensive Use on Groundwater Quality; Commission on Groundwater Protection of the International Association of Hydrogeologists (IAH): Prague, Czech Republic, 2002; pp. 113–132. [Google Scholar]
- EUWI. Mediterranean Groundwater Report. Technical report on groundwater management in the Mediterranean and the Water Framework Directive. Available online: https://circabc.europa.eu/sd/a/50c3b2a9-4816-4ab1-9a33-d41c327759e3/Mediterranean%20Groundwater%20Report_final_150207_clear.pdf (accessed on 15 February 2007).
- Petalas, C.; Lambrakis, N. Simulation of intense salinization phenomena in coastal aquifers—The case of the coastal aquifers of Thrace. J. Hydrol. 2006, 324, 51–64. [Google Scholar] [CrossRef]
- Zaarour, T. Application of GALDIT Index in the Mediterranean Region to Assess Vulnerability to Sea Water Intrusion. Master’s Thesis, Department of Physical Geography and Ecosystem Science Lund University, Lund, Sweden, 2017. [Google Scholar]
- Chachadi, A.G.; Lobo-Ferreira, J.P. Sea water intrusion vulnerability mapping of aquifers using GALDIT method. Coastin—A Coastal Policy Res. Newsl. 2001, 4, 7–9. [Google Scholar]
- Chachadi, A.G.; Lobo-Ferreira, J.P. Assessing aquifer vulnerability to sea water intrusion using GALDIT method: Part 2-GALDIT Indicators Description. In Proceedings of the fourth Inter-Celtic Colloquium on Hydrology and Management of Water Resources, Guimaraes, Portugal, 11–14 July 2005. [Google Scholar]
- Das, A.; Datta, B. Development of multi objective management models for coastal aquifers. J. Water Resour. Plan. Manag. 1999, 1252, 76–87. [Google Scholar] [CrossRef]
- Werner, A.D.; Alcoe, D.W.; Ordens, C.M.; Hutson, J.L.; Ward, J.D.; Simmons, C.T. Current practice and future challenges in coastal aquifer management: Flux-based and trigger-level approaches with application to an Australian case study. Water Resour. Manag. 2011, 25, 1831–1853. [Google Scholar] [CrossRef]
- Suhartono, E.; Purwanto, P.; Suripin, S. Seawater Intrusion Modeling on Groundwater Confined Aquifer in Semarang. Procedia Environ. Sci. 2015, 23, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Allouche, N.; Maanan, M.; Gontara, M.; Rollo, N.; Jmal, I.; Bouri, S. A global risk approach to assessing groundwater vulnerability. Environ. Model. Softw. 2017, 88, 168–182. [Google Scholar] [CrossRef]
- Singaraja, C.; Chidambaram, S.; Anandhan, P.; Prasanna, M.V.; Thivya, C.; Thilagavathi, R. A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India. Environ. Dev. Sustain. 2015, 17, 443–475. [Google Scholar] [CrossRef]
- Motevalli, A.; Moradi, H.R.; Javadi, S. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer). J. Hydrol. 2018, 557, 753–773. [Google Scholar] [CrossRef]
- Kazakis, N.; Pavlou, A.; Vargemezis, G.; Voudouris, K.; Soulios, G.; Pliakas, F.; Tsokas, G. Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Sci. Total Environ. 2016, 543, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Chachadi, A.G.; Raikar, P.S.; Lobo Ferreira, J.P.; Oliveira, M.M. GIS and Mathematical Modelling for the Assessment of Groundwater Vulnerability to Pollution: Application to an Indian Case Study Area in Goa; Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 2001. [Google Scholar]
- Bouderbala, A.; Remini, B.; Saaed Hamoudi, A.; Pulido-Bosch, A. Assessment of groundwater vulnerability and quality in coastal aquifers: A case study (Tipaza, North Algeria). Arab. J. Geosci. 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Recinos, N.; Kallioras, A.; Pliakas, F.; Schuth, C. Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ. Earth Sci. 2015, 73, 1017–1032. [Google Scholar] [CrossRef]
- Pedreira, R.; Kallioras, A.; Pliakas, F.; Gkiougkis, I.; Schuth, C. Groundwater vulnerability assessment of a coastal aquifer system at River Nestos eastern Delta Greece. Environ. Earth Sci. 2015, 73, 6387–6415. [Google Scholar] [CrossRef]
- Kazakis, N.; Spiliotis, M.; Voudouris, K.; Pliakas, F.K.; Papadopoulos, B. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Sci. Total. Environ. 2018, 621, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Singhal, V.; Goyal, R. Development of conceptual groundwater flow model for Pali Area, India. Afr. J. Environ. Sci. Technol. 2011, 5, 1085–1092. [Google Scholar] [CrossRef]
- Voudouris, K.; Kazakis, N.; Polemio, M.; Kareklas, K. Assessment of intrinsic vulnerability using the DRASTIC model and GIS in the Kiti aquifer, Cyprus. Eur. Water 2010, 30, 13–24. [Google Scholar]
- Sener, E.; Sener, S.; Davraz, A. Assessment of aquifer vulnerability based on GIS and DRASTIC methods: A case study of the Senirkent–Uluborlu basin (Isparta, Turkey). Hydrogeol. J. 2009, 17, 2023–2035. [Google Scholar] [CrossRef]
- Watkins, D.W.; McKinney, D.C.; Maidment, D.R. Use of geographic information systems in ground-water flow modeling. J. Water Resour. Plan. Manag. 1996, 122, 88–96. [Google Scholar] [CrossRef]
- Betancur, T. Una Aproximación al Conocimiento de un Sistema Acuífero Tropical. Caso de Estudio: Bajo Cauca Antioqueño. Ph.D. Thesis, Universidad de Antioquia, Medellín, Colombia, 2008. (In Spanish). [Google Scholar]
- Betancur, T.; Palacio, C.A.; Escobar, J.F. Conceptual Models in Hydrogeology, Methodology and Results. Hydrogeology—A Global Perspective; Gholam, A.K., Ed.; InTechOpen: London, UK, 2012; Volume 5, p. 232. ISBN 978-953-51-0048-5. [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Hydrogeological Study—Water District of Aegean Islands. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010; Volumes 1 and 2. (In Greek) [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Hydrogeological Model of Flow Simulation of a Granular Aquifer System in North Rhodes Island. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010. (In Greek) [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Field Measurements (Water—Physicochemical Measurements)-Water District of Aegean Islands. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010; Volume 1. (In Greek) [Google Scholar]
- Institute of Geology and Mineral Exploration (IGME). Chemical analyses of groundwater (general-specific—trace elements—isotopes)—Water District of Aegean Islands. In Project: Recording and Evaluation of Hydrogeological Characteristics of Groundwater and Water Systems in the Country; IGME: Athens, Greece, 2010; Volume 1. (In Greek) [Google Scholar]
- Hellenic Statistical Authority. Population and Housing Census 2011. Permanent Population. 2011. Available online: http://www.statistics.gr/2011-census-pop-hous (accessed on 1 May 2019).
- Civil Aviation Authority. Air Traffic Statistics, Directorate of Organization and Development, Department of Statistics, 2009–2017. Available online: http://www.ypa.gr/profile/statistics/yearstatistics/ (accessed on 1 May 2019).
- Mavriou, Z. Contribution to the Development of Aquifers Conceptual Models in Rhodes Island. Application of GALDIT Method. Master’s Thesis, Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece, 2018. (In Greek). [Google Scholar]
- Ministry of Environment and Energy. 1st Update of River Basin Management Plans of the Aegean Islands Water District; Special Secretariat for Water; Ministry of Environment and Energy: Athens, Greece, 2017. (In Greek)
- Stergiadis, M. Hydrogeological Study in the North Part of Rhodes Island—Simulation of Groundwater Flow Using a Three-Dimensional Model of Groundwater Flow and Princeton Transport Code (PTC) Model. Diploma Thesis, Department of Environmental Engineering, Technical University of Crete, Chania, Greece, 2014. (In Greek). [Google Scholar]
- Werner, A.D.; Bakker, M.; Post, V.E.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Yakirevich, A.; Melloul, A.; Shaath, S.; Borisov, V. Simulation of seawater intrusion into the Khan Yunis area of the Gaza strip coastal aquifer. J. Hydrogeol. 1998, 6, 549–559. [Google Scholar] [CrossRef]
- Kazakis, N.; Busico, G.; Colombani, N.; Mastrocicco, M.; Voudouris, K. Limitations of GALDIT to map seawater intrusion vulnerability in a highly touristic coastal area. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012050. [Google Scholar] [CrossRef]
Parameter | Weight | Classification | Rating | |
---|---|---|---|---|
Groundwater Occurrence (G) | 1 | Confined aquifer | 10 | |
Unconfined aquifer | 7.5 | |||
Leaky confined aquifer | 5 | |||
Bounded aquifer | 2.5 | |||
Aquifer Hydraulic Conductivity (A) (m/day) | 3 | High | >40 | 10 |
Medium | 40–10 | 7.5 | ||
Low | 10–5 | 5 | ||
Very low | <5 | 2.5 | ||
Height of Groundwater Level above Sea Level (L) (m) | 4 | High | <1.0 | 10 |
Medium | 1.0–1.5 | 7.5 | ||
Low | 1.5–2.0 | 5 | ||
Very low | >2.0 | 2.5 | ||
Distance from the Shore (D) (m) | 4 | High | <500 | 10 |
Medium | 500–750 | 7.5 | ||
Low | 750–1000 | 5 | ||
Very low | >1000 | 2.5 | ||
Impact of existing status of seawater intrusion (I) | 1 | High | >2 | 10 |
Medium | 1.5–2.0 | 7.5 | ||
Low | 1.0–1.5 | 5 | ||
Very low | <1 | 2.5 | ||
Thickness of the aquifer (T) (m) | 2 | High | >10 | 10 |
Medium | 7.5–10 | 7.5 | ||
Low | 5–7.5 | 5 | ||
Very low | <5 | 2.5 |
Mean Monthly Rainfall Values (mm) for the Period 2013–2017 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Jan. | Feb. | Mar. | Apr. | May | Jun. | July | Aug. | Sept. | Oct. | Nov. | Dec. |
132.0 | 66.9 | 88.0 | 22.9 | 39.4 | 1.5 | 0.9 | 1.1 | 19.1 | 54.4 | 149.6 | 66.6 |
Mean annual rainfall: 642.3 |
GALDIT Score | Vulnerability | km2 | (%) |
---|---|---|---|
≥7.5 | High | 3.46 | 4.83 |
5–7.5 | Medium | 24.01 | 33.56 |
<5 | Low | 44.09 | 61.61 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavriou, Z.; Kazakis, N.; Pliakas, F.-K. Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS. Environments 2019, 6, 56. https://doi.org/10.3390/environments6050056
Mavriou Z, Kazakis N, Pliakas F-K. Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS. Environments. 2019; 6(5):56. https://doi.org/10.3390/environments6050056
Chicago/Turabian StyleMavriou, Zografina, Nerantzis Kazakis, and Fotios-Konstantinos Pliakas. 2019. "Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS" Environments 6, no. 5: 56. https://doi.org/10.3390/environments6050056
APA StyleMavriou, Z., Kazakis, N., & Pliakas, F. -K. (2019). Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS. Environments, 6(5), 56. https://doi.org/10.3390/environments6050056